Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Adv Res ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38432393

RESUMO

INTRODUCTION: Vascular calcification, a devastating vascular complication accompanying atherosclerotic cardiovascular disease and chronic kidney disease, increases the incidence of adverse cardiovascular events and compromises the efficacy of vascular interventions. However, effective therapeutic drugs and treatments to delay or prevent vascular calcification are lacking. OBJECTIVES: This study was designed to test the therapeutic effects and mechanism of Moscatilin (also known as dendrophenol) from Dendrobium huoshanense (an eminent traditional Chinese medicine) in suppressing vascular calcification in vitro, ex vivo and in vivo. METHODS: Male C57BL/6J mice (25-week-old) were subjected to nicotine and vitamin D3 (VD3) treatment to induce vascular calcification. In vitro, we established the cellular model of osteogenesis of human aortic smooth muscle cells (HASMCs) under phosphate conditions. RESULTS: By utilizing an in-house drug screening strategy, we identified Moscatilin as a new naturally-occurring chemical entity to reduce HASMC calcium accumulation. The protective effects of Moscatilin against vascular calcification were verified in cultured HASMCs. Unbiased transcriptional profiling analysis and cellular thermal shift assay suggested that Moscatilin suppresses vascular calcification via binding to interleukin 13 receptor subunit A2 (IL13RA2) and augmenting its expression. Furthermore, IL13RA2 was reduced during HASMC osteogenesis, thus promoting the secretion of inflammatory factors via STAT3. We further validated the participation of Moscatilin-inhibited vascular calcification by the classical WNT/ß-catenin pathway, among which WNT3 played a key role in this process. Moscatilin mitigated the crosstalk between WNT3/ß-catenin and IL13RA2/STAT3 to reduce osteogenic differentiation of HASMCs. CONCLUSION: This study supports the potential of Moscatilin as a new naturally-occurring candidate drug for treating vascular calcification via regulating the IL13RA2/STAT3 and WNT3/ß-catenin signalling pathways.

2.
Acta Pharmacol Sin ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351317

RESUMO

Transforming growth factor-ß (TGF-ß) signaling is initiated by activation of transmembrane TGF-ß receptors (TGFBR), which deploys Smad2/3 transcription factors to control cellular responses. Failure or dysregulation in the TGF-ß signaling pathways leads to pathological conditions. TGF-ß signaling is regulated at different levels along the pathways and begins with the liberation of TGF-ß ligand from its latent form. The mechanisms of TGFBR activation display selectivity to cell types, agonists, and TGF-ß isoforms, enabling precise control of TGF-ß signals. In addition, the cell surface compartments used to release active TGF-ß are surprisingly vibrant, using thrombospondins, integrins, matrix metalloproteinases and reactive oxygen species. The scope of TGFBR activation is further unfolded with the discovery of TGFBR activation initiated by other signaling pathways. The unique combination of mechanisms works in series to trigger TGFBR activation, which can be explored as therapeutic targets. This comprehensive review provides valuable insights into the diverse mechanisms underpinning TGFBR activation, shedding light on potential avenues for therapeutic exploration.

3.
Trends Cardiovasc Med ; 34(3): 203-211, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36702388

RESUMO

Cardiovascular diseases (CVD) are the leading cause of mortality worldwide despite an aggressive reduction of traditional cardiovascular risk factors. Underlying inflammatory conditions such as inflammatory bowel disease (IBD) increase the risk of developing CVD. A broad understanding of the underlying pathophysiological processes between IBD and CVD is required to treat and prevent cardiovascular events in patients with IBD. This review highlights the commonality between IBD and CVD, including dysregulated immune response, genetics, environmental risk factors, altered gut microbiome, stress, endothelial dysfunction and abnormalities, to shed light on an essential area of modern medicine.

4.
Int J Mol Sci ; 23(22)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36430902

RESUMO

AIMS: G protein-coupled receptor (GPCR) transactivation of kinase receptors greatly expands the actions attributable to GPCRs. Thrombin, via its cognate GPCR, protease-activated receptor (PAR)-1, transactivates tyrosine and serine/threonine kinase receptors, specifically the epidermal growth factor receptor and transforming growth factor-ß receptor, respectively. PAR-1 transactivation-dependent signalling leads to the modification of lipid-binding proteoglycans involved in the retention of lipids and the development of atherosclerosis. The mechanisms of GPCR transactivation of kinase receptors are distinct. We aimed to investigate the role of proximal G proteins in transactivation-dependent signalling. MAIN METHODS: Using pharmacological and molecular approaches, we studied the role of the G⍺ subunits, G⍺q and G⍺11, in the context of PAR-1 transactivation-dependent signalling leading to proteoglycan modifications. KEY FINDINGS: Pan G⍺q subunit inhibitor UBO-QIC/FR900359 inhibited PAR-1 transactivation of kinase receptors and proteoglycans modification. The G⍺q/11 inhibitor YM254890 did not affect PAR-1 transactivation pathways. Molecular approaches revealed that of the two highly homogenous G⍺q members, G⍺q and G⍺11, only the G⍺q was involved in regulating PAR-1 mediated proteoglycan modification. Although G⍺q and G⍺11 share approximately 90% homology at the protein level, we show that the two isoforms exhibit different functional roles. SIGNIFICANCE: Our findings may be extrapolated to other GPCRs involved in vascular pathology and highlight the need for novel pharmacological tools to assess the role of G proteins in GPCR signalling to expand the preeminent position of GPCRs in human therapeutics.


Assuntos
Músculo Liso Vascular , Receptor PAR-1 , Humanos , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Músculo Liso Vascular/metabolismo , Ativação Transcricional , Proteínas de Ligação ao GTP/metabolismo , Proteoglicanas/metabolismo
5.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361754

RESUMO

Cardiovascular disease is the largest single cause of disease-related mortality worldwide and the major underlying pathology is atherosclerosis. Atherosclerosis develops as a complex process of vascular lipid deposition and retention by modified proteoglycans, endothelial dysfunction and unresolved chronic inflammation. There are a multitude of current therapeutic agents, most based on lowering plasma lipid levels, but, overall, they have a lower than optimum level of efficacy and many deaths continue to arise from cardiovascular disease world-wide. To identify and evaluate potential novel cardiovascular drugs, suitable animal models that reproduce human atherosclerosis with a high degree of fidelity are required as essential pre-clinical research tools. Commonly used animal models of atherosclerosis include mice (ApoE-/-, LDLR-/- mice and others), rabbits (WHHL rabbits and others), rats, pigs, hamster, zebrafish and non-human primates. Models based on various wild-type and genetically modified mice have been extensively reviewed but mice may not always be appropriate. Thus, here, we provide an overview of the advantages and shortcomings of various non-mouse animal models of atherosclerotic plaque formation, and plaque rupture, as well as commonly used interventional strategies. Taken together, the combinatorial selection of suitable animal models readily facilitates reproducible and rigorous translational research in discovering and validating novel anti-atherosclerotic drugs.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Placa Aterosclerótica , Coelhos , Ratos , Humanos , Suínos , Animais , Peixe-Zebra , Modelos Animais de Doenças , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/patologia , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/patologia
6.
Trends Pharmacol Sci ; 43(11): 920-939, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35902281

RESUMO

Atherosclerotic cardiovascular disease (CVD), the major cause of premature human mortality, is a chronic and progressive metabolic and inflammatory disease in large- and medium-sized arteries. Mouse models are widely used to gain mechanistic insights into the pathogenesis of atherosclerosis and have facilitated the discovery of anti-atherosclerotic drugs. Despite promising preclinical studies, many drug candidates have not translated to clinical use because of the complexity of disease patho-mechanisms including lipid metabolic traits and inflammatory, genetic, and hemodynamic factors. We review the current preclinical utility and translation potential of traditional [apolipoprotein E (APOE)- and low-density lipoprotein (LDL) receptor (LDLR)-deficient mice] and emerging mouse models that include partial carotid ligation and AAV8-Pcsk9-D377Y injection in atherosclerosis research and drug discovery. This article represents an important resource in atherosclerosis research.


Assuntos
Aterosclerose , Pró-Proteína Convertase 9 , Animais , Apolipoproteínas E/genética , Aterosclerose/genética , Modelos Animais de Doenças , Humanos , Lipoproteínas LDL , Camundongos , Camundongos Knockout , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Pesquisa Translacional Biomédica
7.
Clin Exp Pharmacol Physiol ; 49(7): 710-718, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35527471

RESUMO

Endothelin-1 (ET-1) is implicated in the development of atherosclerosis and mediates glycosaminoglycan (GAG) chain hyperelongation on proteoglycans. Our aim was to identify the ET-1-mediated signalling pathway involving NADPH oxidase (NOX), p38 MAP kinsae and Smad2 linker region phosphorylation (phospho-Smad2L) regulate GAG synthesising enzymes mRNA expression (C4ST-1 and ChSy1) involved in GAG chains hyperelongation in human vascular smooth muscle cells (VSMCs). Signalling intermediates were detected and quantified by Western blotting and the mRNA levels of GAG synthesising enzymes were assessed by quantitative real-time polymerase chain reaction (qRT-PCR). ET-1 treatment of human VSMCs resulted in an increase in phospho-Smad2L level. The TGF-ß receptor antagonist, SB431542 and the mixed ETA and ETB receptor antagonist bosentan, inhibited ET-1-mediated phospho-Smad2L level. In the presence of apocynin and diphenyleneiodonium chloride (DPI) (NOX inhibitors) and SB239063 (p38 inhibitor) ET-1-mediated phospho-Smad2L levels were inhibited. The gene expression levels of GAG synthesising enzymes post-ET-1 treatment were increased compared to untreated controls (p < 0.01). The ET-mediated the mRNA levels of these enzymes were blocked by the bosentan, SB431542, SB239063, DPI, apocynin and antioxidant N-acetyl-L-cysteine (NAC). ET-1-mediated signalling to GAG synthesising enzymes gene expression occurs via transactivation-dependent pathway involving NOX, p38 MAP kinsae and Smad2 linker region phosphorylation.


Assuntos
Endotelina-1 , Glicosaminoglicanos , Bosentana , Endotelina-1/genética , Endotelina-1/metabolismo , Genes gag , Glicosaminoglicanos/metabolismo , Humanos , NADPH Oxidases/metabolismo , Fosforilação , RNA Mensageiro/metabolismo
8.
Cell Mol Life Sci ; 79(2): 121, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35122536

RESUMO

Toll-like receptors (TLRs) recognise pathogen­associated molecular patterns, which allow the detection of microbial infection by host cells. Bacterial-derived toxin lipopolysaccharide activates TLR4 and leads to the activation of the Smad2 transcription factor. The phosphorylation of the Smad2 transcription factor is the result of the activation of the transforming growth factor-ß receptor 1 (TGFBR1). Therefore, we sought to investigate LPS via TLR4-mediated Smad2 carboxy terminal phosphorylation dependent on the transactivation of the TGFBR1. The in vitro model used human aortic vascular smooth muscle cells to assess the implications of TLR4 transactivation of the TGFBR1 in vascular pathophysiology. We show that LPS-mediated Smad2 carboxy terminal phosphorylation is inhibited in the presence of TGFBR1 inhibitor, SB431542. Treatment with MyD88 and TRIF pathway antagonists does not affect LPS-mediated phosphorylation of Smad2 carboxy terminal; however, LPS-mediated Smad2 phosphorylation was inhibited in the presence of MMP inhibitor, GM6001, and unaffected in the presence of ROCK inhibitor Y27632 or ROS/NOX inhibitor DPI. LPS via transactivation of the TGFBR1 stimulates PAI-1 mRNA expression. TLRs are first in line to respond to exogenous invading substances and endogenous molecules; our findings characterise a novel signalling pathway in the context of cell biology. Identifying TLR transactivation of the TGFBR1 may provide future insight into the detrimental implications of pathogens in pathophysiology.


Assuntos
Lipopolissacarídeos/farmacologia , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptor 4 Toll-Like/metabolismo , Ativação Transcricional/efeitos dos fármacos , Benzamidas/farmacologia , Linhagem Celular , Dioxóis/farmacologia , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Fosforilação , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Proteína Smad2/metabolismo , Regulação para Cima/efeitos dos fármacos
9.
Mol Cell Biochem ; 477(4): 981-988, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34982346

RESUMO

G protein-coupled receptor (GPCR) agonist endothelin-1 (ET-1) through transactivation of the transforming growth factor (TGF) ß receptor (TGFBR1) stimulates glycosaminoglycan (GAG) elongation on proteoglycans. GPCR agonists thrombin and lysophosphatidic acid (LPA) via respective receptors transactivate the TGFBR1 via Rho/ROCK dependent pathways however mechanistic insight for ET-1 transactivation of the TGFBR1 remains unknown. NADPH oxidase (NOX) generates reactive oxygen species (ROS) and is a signalling entity implicated in the pathogenesis of many diseases including atherosclerosis. If implicated in this pathway, NOX/ROS would be a potential therapeutic target. In this study, we investigated the involvement of NOX in ET-1/ET receptor-mediated transactivation of TGFBR1 to stimulate mRNA expression of GAG chain synthesizing enzymes chondroitin 4-O-sulfotransferase 1 (C4ST-1) and chondroitin sulfate synthase 1 (ChSy-1). The invitro model used vascular smooth muscle cells that were treated with pharmacological antagonists in the presence and absence of ET-1 or TGF-ß. Proteins and phosphoproteins isolated from treated cells were quantified by western blotting and quantitative real-time PCR was used to assess mRNA expression of GAG synthesizing enzymes. In the presence of diphenyliodonium (DPI) (NOX inhibitor), ET-1 stimulated phospho-Smad2C levels were inhibited. ET-1 mediated mRNA expression of GAG synthesizing enzymes C4ST-1 and ChSy-1 was also blocked by TGBFR1 antagonists, SB431542, broad spectrum ET receptor antagonist bosentan, DPI and ROS scavenger N-acetyl-L-cysteine. This work shows that NOX and ROS play an important role in ET-1 mediated transactivation of the TGFBR1 and downstream gene targets associated with GAG chain elongation. As ROS is involved in GPCR to protein tyrosine kinase receptor transactivation, the NOX/ROS axis presents as the first common biochemical target in all GPCR to kinase receptor transactivation signalling.


Assuntos
Endotelina-1/metabolismo , Glicosaminoglicanos/metabolismo , NADPH Oxidases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/biossíntese , Ativação Transcricional , Células Cultivadas , Endotelina-1/genética , Humanos , NADPH Oxidases/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/genética
10.
J Food Biochem ; 46(3): e13882, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34312884

RESUMO

Atherosclerosis, the major underlying pathology of cardiovascular disease, commences with the binding and trapping of lipids on modified proteoglycans, with hyperelongated glycosaminoglycan chains. Transforming growth factor (TGF)-ß stimulates glycosaminoglycan elongation in vascular smooth muscle cells. We have recently shown that this TGF-ß signaling pathway involves reactive oxygen species (ROS). YY-11 is a dodecapeptide derived from camel milk and it has antioxidant activity. We have investigated the role of YY-11 in blocking ROS signaling and downstream atherogenic responses. YY-11 inhibited TGF-ß stimulated ROS production and inhibited the expression of genes for glycosaminoglycan chain elongation as a component of an in vitro model of atherosclerosis. This study provides a biochemical mechanism for the role of camel milk as a potential nutritional product to contribute to the worldwide amelioration of cardiovascular disease. PRACTICAL APPLICATIONS: The identification of readily accessible foods with antioxidant properties would provide a convenient and cost-effective approach community wide reducing oxidative stress induced pathologies such as atherosclerosis. We demonstrate that camel milk-derived peptide is an antioxidant that can inhibit growth factor-mediated proteoglycan modification in vitro. As proteoglycan modification is being recognized as one of the earliest atherogenic responses, these data support the notion of camel milk as a suitable nutritional product to contribute to the prevention of early stage of atherosclerosis development.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Aterosclerose/tratamento farmacológico , Camelus/metabolismo , Doenças Cardiovasculares/metabolismo , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Humanos , Leite/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Fosforilação , Proteoglicanas/química , Proteoglicanas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteína Smad2/química , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta/metabolismo
11.
FEBS J ; 289(9): 2642-2656, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34826189

RESUMO

Transforming growth factor (TGF)-ß signalling commences with the engagement of TGF-ß ligand to cell surface TGF-ß receptors (TGFBR) stimulating Smad2 carboxyl-terminal phosphorylation (phospho-Smad2C) and downstream biological responses. In several cell models, G protein-coupled receptors (GPCRs) transactivate the TGF-ß receptors type-1 (TGFBR1) leading to phospho-Smad2C, however, we have recently published that in keratinocytes thrombin did not transactivate the TGFBR1. The bulk of TGFBRs reside in the cytosol and in response to protein kinase B (Akt phosphorylation) can translocate to the cell surface increasing the cell's responsiveness to TGF-ß. In this study, we investigate the role of Akt in GPCR transactivation of the TGFBR1. We demonstrate that angiotensin II and thrombin do not phosphorylate Smad2C in human vascular smooth muscle cells and in keratinocytes respectively. We used Akt agonist, SC79 to sensitise the cells to Akt and observed that Ang II and thrombin phosphorylate Smad2C via Akt/AS160-dependent pathways. We show that SC79 rapidly translocates TGFBRs to the cell surface thus increasing the cell's response to the GPCR agonist. These findings highlight novel mechanistic insight for the role of Akt in GPCR transactivation of the TGFBR1.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Trombina , Humanos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Trombina/metabolismo , Ativação Transcricional , Fator de Crescimento Transformador beta/metabolismo
12.
Biomedicines ; 9(6)2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-34203043

RESUMO

The endothelium is the single-cell monolayer that lines the entire vasculature. The endothelium has a barrier function to separate blood from organs and tissues but also has an increasingly appreciated role in anti-coagulation, vascular senescence, endocrine secretion, suppression of inflammation and beyond. In modern times, endothelial cells have been identified as the source of major endocrine and vaso-regulatory factors principally the dissolved lipophilic vosodilating gas, nitric oxide and the potent vascular constricting G protein receptor agonists, the peptide endothelin. The role of the endothelium can be conveniently conceptualized. Continued investigations of the mechanism of endothelial dysfunction will lead to novel therapies for cardiovascular disease. In this review, we discuss the impact of endothelial dysfunction on cardiovascular disease and assess the clinical relevance of endothelial dysfunction.

13.
Int J Biol Sci ; 17(8): 2050-2068, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34131405

RESUMO

Type 2 diabetes mellitus (T2DM) is closely associated with cardiovascular diseases (CVD), including atherosclerosis, hypertension and heart failure. Some anti-diabetic medications are linked with an increased risk of weight gain or hypoglycemia which may reduce the efficacy of the intended anti-hyperglycemic effects of these therapies. The recently developed receptor agonists for glucagon-like peptide-1 (GLP-1RAs), stimulate insulin secretion and reduce glycated hemoglobin levels without having side effects such as weight gain and hypoglycemia. In addition, GLP1-RAs demonstrate numerous cardiovascular protective effects in subjects with or without diabetes. There have been several cardiovascular outcomes trials (CVOTs) involving GLP-1RAs, which have supported the overall cardiovascular benefits of these drugs. GLP1-RAs lower plasma lipid levels and lower blood pressure (BP), both of which contribute to a reduction of atherosclerosis and reduced CVD. GLP-1R is expressed in multiple cardiovascular cell types such as monocyte/macrophages, smooth muscle cells, endothelial cells, and cardiomyocytes. Recent studies have indicated that the protective properties against endothelial dysfunction, anti-inflammatory effects on macrophages and the anti-proliferative action on smooth muscle cells may contribute to atheroprotection through GLP-1R signaling. In the present review, we describe the cardiovascular effects and underlying molecular mechanisms of action of GLP-1RAs in CVOTs, animal models and cultured cells, and address how these findings have transformed our understanding of the pharmacotherapy of T2DM and the prevention of CVD.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1 , Hipoglicemiantes/farmacologia , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/prevenção & controle , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Humanos
14.
Pharmacol Rev ; 73(3): 924-967, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34088867

RESUMO

The endothelium, a cellular monolayer lining the blood vessel wall, plays a critical role in maintaining multiorgan health and homeostasis. Endothelial functions in health include dynamic maintenance of vascular tone, angiogenesis, hemostasis, and the provision of an antioxidant, anti-inflammatory, and antithrombotic interface. Dysfunction of the vascular endothelium presents with impaired endothelium-dependent vasodilation, heightened oxidative stress, chronic inflammation, leukocyte adhesion and hyperpermeability, and endothelial cell senescence. Recent studies have implicated altered endothelial cell metabolism and endothelial-to-mesenchymal transition as new features of endothelial dysfunction. Endothelial dysfunction is regarded as a hallmark of many diverse human panvascular diseases, including atherosclerosis, hypertension, and diabetes. Endothelial dysfunction has also been implicated in severe coronavirus disease 2019. Many clinically used pharmacotherapies, ranging from traditional lipid-lowering drugs, antihypertensive drugs, and antidiabetic drugs to proprotein convertase subtilisin/kexin type 9 inhibitors and interleukin 1ß monoclonal antibodies, counter endothelial dysfunction as part of their clinical benefits. The regulation of endothelial dysfunction by noncoding RNAs has provided novel insights into these newly described regulators of endothelial dysfunction, thus yielding potential new therapeutic approaches. Altogether, a better understanding of the versatile (dys)functions of endothelial cells will not only deepen our comprehension of human diseases but also accelerate effective therapeutic drug discovery. In this review, we provide a timely overview of the multiple layers of endothelial function, describe the consequences and mechanisms of endothelial dysfunction, and identify pathways to effective targeted therapies. SIGNIFICANCE STATEMENT: The endothelium was initially considered to be a semipermeable biomechanical barrier and gatekeeper of vascular health. In recent decades, a deepened understanding of the biological functions of the endothelium has led to its recognition as a ubiquitous tissue regulating vascular tone, cell behavior, innate immunity, cell-cell interactions, and cell metabolism in the vessel wall. Endothelial dysfunction is the hallmark of cardiovascular, metabolic, and emerging infectious diseases. Pharmacotherapies targeting endothelial dysfunction have potential for treatment of cardiovascular and many other diseases.


Assuntos
Aterosclerose , Tratamento Farmacológico da COVID-19 , COVID-19 , Fármacos Cardiovasculares , Doenças Cardiovasculares , Endotélio Vascular , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Aterosclerose/fisiopatologia , COVID-19/metabolismo , COVID-19/fisiopatologia , Fármacos Cardiovasculares/classificação , Fármacos Cardiovasculares/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Descoberta de Drogas , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Humanos , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/tendências , SARS-CoV-2
15.
Molecules ; 26(8)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923651

RESUMO

Curcumin is a natural compound that has been widely used as a food additive and medicine in Asian countries. Over several decades, diverse biological effects of curcumin have been elucidated, such as anti-inflammatory and anti-oxidative activities. Monocyte chemoattractant protein-1 (MCP-1) is a key inflammatory marker during the development of atherosclerosis, and curcumin blocks MCP-1 expression stimulated by various ligands. Hence, we studied the action of curcumin on lysophosphatidic acid (LPA) mediated MCP-1 expression and explored the specific underlying mechanisms. In human vascular smooth muscle cells, LPA induces Rho-associated protein kinase (ROCK) dependent transforming growth factor receptor (TGFBR1) transactivation, leading to glycosaminoglycan chain elongation. We found that LPA also signals via the TGFBR1 transactivation pathway to regulate MCP-1 expression. Curcumin blocks LPA mediated TGFBR1 transactivation and subsequent MCP-1 expression by blocking the ROCK signalling. In the vasculature, ROCK signalling regulates smooth muscle cell contraction, inflammatory cell recruitment, endothelial dysfunction and vascular remodelling. Therefore, curcumin as a ROCK signalling inhibitor has the potential to prevent atherogenesis via multiple ways.


Assuntos
Quimiocina CCL2/metabolismo , Curcumina/farmacologia , Lisofosfolipídeos/farmacologia , Quinases Associadas a rho/metabolismo , Animais , Western Blotting , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Inflamação/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
Theranostics ; 11(9): 4502-4515, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33754074

RESUMO

Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are new oral drugs for the therapy of patients with type 2 diabetes mellitus (T2DM). Research in the past decade has shown that drugs of the SGLT2i class, such as empagliflozin, canagliflozin, and dapagliflozin, have pleiotropic effects in preventing cardiovascular diseases beyond their favorable impact on hyperglycemia. Of clinical relevance, recent landmark cardiovascular outcome trials have demonstrated that SGLT2i reduce major adverse cardiovascular events, hospitalization for heart failure, and cardiovascular death in T2DM patients with/without cardiovascular diseases (including atherosclerotic cardiovascular diseases and various types of heart failure). The major pharmacological action of SGLT2i is through inhibiting glucose re-absorption in the kidney and thus promoting glucose excretion. Studies in experimental models of atherosclerosis have shown that SGLT2i ameliorate the progression of atherosclerosis by mechanisms including inhibition of vascular inflammation, reduction in oxidative stress, reversing endothelial dysfunction, reducing foam cell formation and preventing platelet activation. Here, we summarize the anti-atherosclerotic actions and mechanisms of action of SGLT2i, with an aim to emphasize the clinical utility of this class of agents in preventing the insidious cardiovascular complications accompanying diabetes.


Assuntos
Aterosclerose/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Transportador 2 de Glucose-Sódio/metabolismo , Animais , Aterosclerose/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Humanos
17.
Arterioscler Thromb Vasc Biol ; 41(2): 601-613, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33356385

RESUMO

Cardiovascular disease is one of the major contributors to global disease burden. Atherosclerosis is an inflammatory process that involves the accumulation of lipids and fibrous elements in the large arteries, forming an atherosclerotic plaque. Rupture of unstable plaques leads to thrombosis that triggers life-threatening complications such as myocardial infarction. Current diagnostic methods are invasive as they require insertion of a catheter into the coronary artery. Molecular imaging techniques, such as magnetic resonance imaging, have been developed to image atherosclerotic plaques and thrombosis due to its high spatial resolution and safety. The sensitivity of magnetic resonance imaging can be improved with contrast agents, such as iron oxide nanoparticles. This review presents the most recent advances in atherosclerosis, thrombosis, and myocardial infarction molecular imaging using iron oxide-based nanoparticles. While some studies have shown their effectiveness, many are yet to undertake comprehensive testing of biocompatibility. There are still potential hazards to address and complications to diagnosis, therefore strategies for overcoming these challenges are required.


Assuntos
Doenças Cardiovasculares/diagnóstico por imagem , Sistema Cardiovascular/diagnóstico por imagem , Meios de Contraste , Nanopartículas Magnéticas de Óxido de Ferro , Imageamento por Ressonância Magnética , Imagem Molecular , Animais , Aterosclerose/diagnóstico por imagem , Aterosclerose/metabolismo , Aterosclerose/terapia , Biomarcadores/metabolismo , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/terapia , Sistema Cardiovascular/metabolismo , Meios de Contraste/efeitos adversos , Humanos , Nanopartículas Magnéticas de Óxido de Ferro/efeitos adversos , Imageamento por Ressonância Magnética/efeitos adversos , Imagem Molecular/efeitos adversos , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/terapia , Tomografia por Emissão de Pósitrons , Valor Preditivo dos Testes , Prognóstico , Trombose/diagnóstico por imagem , Trombose/metabolismo , Trombose/terapia , Tomografia Computadorizada de Emissão de Fóton Único
18.
Biochim Biophys Acta Mol Cell Res ; 1867(12): 118848, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32920014

RESUMO

Lysophosphatidic acid (LPA) via transactivation dependent signalling pathways contributes to a plethora of physiological and pathophysiological responses. In the vasculature, hyperelongation of glycosaminoglycan (GAG) chains on proteoglycans leads to lipid retention in the intima resulting in the early pathogenesis of atherosclerosis. Therefore, we investigated and defined the contribution of transactivation dependent signalling in LPA mediated GAG chain hyperelongation in human vascular smooth muscle cells (VSMCs). LPA acting via the LPA receptor 5 (LPAR5) transactivates the TGFBR1 to stimulate the mRNA expression of GAG initiation and elongation genes xylosyltransferase-1 (XYLT1) and chondroitin 6-sulfotransferase-1 (CHST3), respectively. We found that LPA stimulates ROS and Akt signalling in VSMCs, however they are not associated in LPAR5 transactivation of the TGFBR1. We observed that LPA via ROCK dependent pathways transactivates the TGFBR1 to stimulate genes associated with GAG chain elongation. We demonstrate that GPCR transactivation of the TGFBR1 occurs via a universal biochemical mechanism and the identified effectors represent potential therapeutic targets to inhibit pathophysiological effects of GPCR transactivation of the TGFBR1.


Assuntos
Lisofosfolipídeos/metabolismo , Pentosiltransferases/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Receptores de Ácidos Lisofosfatídicos/genética , Sulfotransferases/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Glicosaminoglicanos/biossíntese , Humanos , Lisofosfolipídeos/genética , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Biossíntese de Proteínas/genética , Proteoglicanas/biossíntese , RNA Mensageiro/genética , Quinases Associadas a rho/genética , UDP Xilose-Proteína Xilosiltransferase , Carboidrato Sulfotransferases
19.
Biochem Biophys Res Commun ; 532(2): 239-243, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32868072

RESUMO

Pleotropic growth factor, transforming growth factor (TGF)-ß drives the modification and elongation of glycosaminoglycan (GAG) chains on proteoglycans. Hyperelongated GAG chains bind and trap lipoproteins in the intima leading to the formation of atherosclerotic plaques. We have identified that phosphorylation of Smad2 linker region drives GAG chain modification. The identification of an inhibitor of Smad2 linker region phosphorylation and GAG chain modification signifies a potential therapeutic for cardiovascular diseases. Artemisinin renowned for its potent anti-malarial effects possesses a broad range of biological effects. Our aim was to characterise the anti-atherogenic role of artemisinin in vascular smooth muscle cells (VSMCs). We demonstrate that TGF-ß mediated Smad2 linker region phosphorylation and GAG chain elongation was attenuated by artemisinin; however, we observed no effect on VSMC proliferation. Our data demonstrates the potential for artemisinin to be developed as a therapy to inhibit the development of atherosclerosis by prevention of lipid deposition in the vessel wall without affecting the proliferation of VSMCs.


Assuntos
Artemisininas/farmacologia , Glicosaminoglicanos/genética , Músculo Liso Vascular/citologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glucuronosiltransferase/genética , Glicosaminoglicanos/biossíntese , Humanos , Enzimas Multifuncionais/genética , Músculo Liso Vascular/efeitos dos fármacos , N-Acetilgalactosaminiltransferases/genética , Fosforilação/efeitos dos fármacos , Proteína Smad2/metabolismo , Sulfotransferases/genética , Fator de Crescimento Transformador beta/farmacologia
20.
ACS Pharmacol Transl Sci ; 3(3): 457-471, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32566912

RESUMO

Toll-like receptors (TLRs) are dominant components of the innate immune system. Activated by both pathogen-associated molecular patterns and damage-associated molecular patterns, TLRs underpin the pathology of numerous inflammation related diseases that include not only immune diseases, but also cardiovascular disease (CVD), diabetes, obesity, and cancers. Growing evidence has demonstrated that TLRs are involved in multiple cardiovascular pathophysiologies, such as atherosclerosis and hypertension. Specifically, a trial called the Canakinumab Anti-inflammatory Thrombosis Outcomes Study showed the use of an antibody that neutralizes interleukin-1ß, reduces the recurrence of cardiovascular events, demonstrating inflammation as a therapeutic target and also the research value of targeting the TLR system in CVD. In this review, we provide an update of the interplay between TLR signaling, inflammatory mediators, and atherothrombosis, with an aim to identify new therapeutic targets for atherothrombotic CVD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...