Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Genome ; 17(1): e20394, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37880495

RESUMO

Climate change causes extreme conditions like prolonged drought, which results in yield reductions due to its effects on nutrient balances such as nitrogen uptake and utilization by plants. Nitrogen (N) is a crucial nutrient element for plant growth and productivity. Understanding the mechanistic basis of nitrogen use efficiency (NUE) under drought conditions is essential to improve wheat (Triticum aestivum L.) yield. Here, we evaluated the genetic variation of NUE-related traits and photosynthesis response in a diversity panel of 200 wheat genotypes under drought and nitrogen stress conditions to uncover the inherent genetic variation and identify quantitative trait loci (QTLs) underlying these traits. The results revealed significant genetic variations among the genotypes in response to drought stress and nitrogen deprivation. Drought impacted plant performance more than N deprivation due to its effect on water and nutrient uptake. GWAS identified a total of 27 QTLs with a significant main effect on the drought-related traits, while 10 QTLs were strongly associated with the NUE traits. Haplotype analysis revealed two different haplotype blocks within the associated region on chromosomes 1B and 5A. The two haplotypes showed contrasting effects on N uptake and use efficiency traits. The in silico and transcript analyses implicated candidate gene coding for cold shock protein. This gene was the most highly expressed gene under several stress conditions, including drought stress. Upon validation, these QTLs on 1B and 5A could be used as a diagnostic marker for NUE and drought tolerance screening in wheat.


Assuntos
Secas , Triticum , Haplótipos , Triticum/genética , Nitrogênio/metabolismo , Locos de Características Quantitativas
2.
Physiol Plant ; 175(4): e13951, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37310785

RESUMO

The environments where the progenitors are grown have the potential to affect the expression of traits in their offspring. Currently, there are various hypotheses regarding the evolutionary and ecological importance of stress memory effects. There is uncertainty regarding its occurrence, persistence, predictability, and adaptive value. In this study, 15 winter wheat cultivars were grown under drought and well-watered (control) treatments for two seasons to produce seeds with all possible combinations of drought exposure histories. A comprehensive analysis to estimate transgenerational (grandparental effects), intergenerational (parental effects), and their combined memory effects on offspring traits under both control and drought moisture treatments, was performed. There were significant memory effects in most of the evaluated traits ranging from +787% to -39.0% changes in both seed quality and plant traits. The expression of stress memory was highly dependent on the generation and number of exposures, traits, and seasons. Under drought treatment, the combination of grandparental and parental stress memories was additive in all traits, but their strengths were variable when considered separately. Stress memory enhanced the performance of offspring under similar stressful conditions: increased plant height, above-ground biomass, number of grains per plant, grain weight per plant and water potential. This study offers valuable new insights into the occurrence of drought stress memory, the complexities of the effects, possible physiological and metabolic alterations explaining the detected differences, and impacts toward a clearer understanding of their generation and context-dependency.


Assuntos
Estresse Fisiológico , Triticum , Estações do Ano , Triticum/genética , Secas , Sementes/genética , Água
3.
Theor Appl Genet ; 136(2): 26, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36788199

RESUMO

Developing stress-tolerant plants continues to be the goal of breeders due to their realized yields and stability. Plant responses to drought have been studied in many different plant species, but the occurrence of stress memory as well as the potential mechanisms for memory regulation is not yet well described. It has been observed that plants hold on to past events in a way that adjusts their response to new challenges without altering their genetic constitution. This ability could enable training of plants to face future challenges that increase in frequency and intensity. A better understanding of stress memory-associated mechanisms leading to alteration in gene expression and how they link to physiological, biochemical, metabolomic and morphological changes would initiate diverse opportunities to breed stress-tolerant genotypes through molecular breeding or biotechnological approaches. In this perspective, this review discusses different stress memory types and gives an overall view using general examples. Further, focusing on drought stress, we demonstrate coordinated changes in epigenetic and molecular gene expression control mechanisms, the associated transcription memory responses at the genome level and integrated biochemical and physiological responses at cellular level following recurrent drought stress exposures. Indeed, coordinated epigenetic and molecular alterations of expression of specific gene networks link to biochemical and physiological responses that facilitate acclimation and survival of an individual plant during repeated stress.


Assuntos
Secas , Melhoramento Vegetal , Plantas/genética , Genótipo , Aclimatação , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...