Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene Expr Patterns ; 42: 119217, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34767969

RESUMO

Midbrain dopaminergic neurons (mDA) play an important role in controlling the voluntary motor movement, reward, and emotion-based behaviour. Differentiation of mDA neurons from progenitors depends on several secreted proteins, such as sonic hedgehog (SHH). The present study attempted to elucidate the possible role(s) of some SHH signaling components (Ptch1, Gli1, Gli2 and Gli3) in the spatiotemporal development of mDA neurons along the rostrocaudal axis of the midbrain and their possible roles in differentiation and survival of mDA neurons and the significance of using in vitro models for studying the development of mDA neurons. At E12 and E14, only Ptch1 and Gli1 were expressed in ventrolateral midbrain domains. All examined SHH signalling molecules were not detected in mDA area. Whereas, in MN9D cells, many SHH signalling molecules were expressed and co-localized with the dopaminergic marker; tyrosine hydroxylase (TH), and their expression were upregulated with SHH treatment of the MN9D cells. These results suggest that mDA neurons differentiation and survival might be independent of SHH in the late developmental stages (E12-18). Besides, MN9D cell line is not the ideal in vitro model for investigating the differentiation of mDA and hence, the ventral midbrain primary culture might be favored over MN9D line.


Assuntos
Neurônios Dopaminérgicos , Proteínas Hedgehog , Animais , Diferenciação Celular , Neurônios Dopaminérgicos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Mesencéfalo/metabolismo , Camundongos , Neurogênese
2.
Microsc Microanal ; 25(3): 769-785, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30761973

RESUMO

This study investigated the histomorphological features of developing rabbit respiratory acini during the postnatal period. On the 1st day of postnatal life, the epithelium of terminal bronchiole consisted of clear cells which intercalated between few ciliated and abundant non-ciliated (Clara) cells. At this age, the rabbit lung was in the alveolar stage. The terminal bronchioles branched into several alveolar ducts, which opened into atria that communicated to alveolar sacs. All primary and secondary inter-alveolar septa were thick and showed a double-capillary network (immature septa). The primitive alveoli were lined largely by type-I pneumocytes and mature type-II pneumocytes. The type-I pneumocytes displayed an intimate contact with the endothelial cells of the blood capillaries forming the blood-air barrier (0.90 ± 0.03 µm in thickness). On the 3rd day, we observed intense septation and massive formation of new secondary septa giving the alveolar sac a crenate appearance. The mean thickness of the air-blood barrier decreased to reach 0.78 ± 0.14 µm. On the 7th day, the terminal bronchiole epithelium consisted of ciliated and non-ciliated cells. The non-ciliated cells could be identified as Clara cells and serous cells. New secondary septa were formed, meanwhile the inter-alveolar septa become much thinner and the air-blood barrier thickness was 0.66 ± 0.03 µm. On the 14th day, the terminal bronchiole expanded markedly and the pulmonary alveoli were thin-walled. Inter-alveolar septa become much thinner and single capillary layers were observed. In the 1st month, the secondary septa increased in length forming mature cup-shaped alveoli. In the 2nd month, the lung tissue grew massively to involve the terminal respiratory unit. In the 3rd month, the pulmonary parenchyma appeared morphologically mature. All inter-alveolar septa showed a single-capillary layer, and primordia of new septa were also observed. The thickness of the air-blood barrier was much thinner; 0.56 ± 0.16 µm. TUNEL assay after birth revealed that the apoptotic cells were abundant and distributed in the epithelium lining of the pulmonary alveoli and the interstitium of the thick interalveolar septa. On the 7th day, and onward, the incidence of apoptotic cells decreased markedly. This study concluded that the lung development included two phases: the first phase (from birth to the 14th days) corresponds to the period of bulk alveolarization and microvascular maturation. The second phase (from the 14th days to the full maturity) corresponds to the lung growth and late alveolarization.


Assuntos
Células Acinares/patologia , Marcação In Situ das Extremidades Cortadas/métodos , Microscopia Eletrônica/métodos , Alvéolos Pulmonares/diagnóstico por imagem , Alvéolos Pulmonares/patologia , Animais , Capilares/diagnóstico por imagem , Capilares/patologia , DNA Nucleotidilexotransferase , Células Endoteliais/patologia , Células Epiteliais/patologia , Epitélio/diagnóstico por imagem , Epitélio/patologia , Masculino , Microscopia Eletrônica de Transmissão , Alvéolos Pulmonares/irrigação sanguínea , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA