Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ASAIO J ; 69(11): 1025-1030, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37556563

RESUMO

Pediatric precapillary pulmonary hypertension can develop in response to systemic atrial hypertension. Systemic atrial decompression following ventricular assist device (VAD) implantation may not sufficiently lower pulmonary vascular resistance (PVR) to consider heart transplant candidacy. Prostacyclins have been used in adult VAD patients with success, but pediatric data on safety and efficacy in this population are limited. We sought to describe our center's experience to show its safety and to present our current protocol for perioperative use. We reviewed our use of prostacyclin therapy in pediatric patients on VAD support with high PVR from 2016 to 2021. Of the 17 patients who met inclusion, 12 survived to transplant and 1 is alive with VAD in situ . All patients survived posttransplant. With continuous intravenous (IV) epoprostenol or treprostinil therapy, there were no bleeding complications or worsening of end-organ function. A significant reduction was observed in vasoactive inotropic scores by 49% in the first 24 hours post-prostacyclin initiation. The proportion of patients surviving to transplant in this high-risk cohort is favorable. In conclusion, prostacyclins may be safe to use in patients with elevated PVR as part of their VAD and transplant course and may provide a transplant option in those otherwise not candidates.


Assuntos
Fibrilação Atrial , Insuficiência Cardíaca , Transplante de Coração , Coração Auxiliar , Hipertensão , Adulto , Humanos , Criança , Epoprostenol/uso terapêutico , Vasodilatadores/uso terapêutico , Coração Auxiliar/efeitos adversos , Prostaglandinas I , Resultado do Tratamento , Estudos Retrospectivos , Insuficiência Cardíaca/cirurgia
2.
Pulm Circ ; 12(1): e12042, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35506098

RESUMO

The reverse Potts shunt is increasingly used as a palliative measure for end-stage pulmonary arterial hypertension (PAH) as a means to offload the right ventricle and improve functional status. This case report describes a child who developed significant hemothorax after reverse Potts shunt that required surgical exploration, blood product administration, and prolonged intensive care hospitalization. Despite lack of preoperative bleeding symptoms, testing revealed acquired von Willebrand disease (aVWD), with subsequent resolution of bleeding. Alterations in von Willebrand factor, including aVWD, have been reported in children with severe PAH but have not previously been associated with bleeding after reverse Potts shunt procedure. As bleeding is a recognized postoperative morbidity in PAH patients undergoing reverse Potts shunt, we highlight a potential role for preoperative testing for aVWD as perioperative factor replacement therapy may improve postoperative outcomes.

3.
Sci Rep ; 11(1): 1468, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446832

RESUMO

Normal growth and development of lymphatic structures depends on mechanical forces created by accumulating interstitial fluid. However, prolonged exposure to pathologic mechanical stimuli generated by chronically elevated lymph flow results in lymphatic dysfunction. The mechanisms that transduce these mechanical forces are not fully understood. Our objective was to investigate molecular mechanisms that alter the growth and metabolism of isolated lymphatic endothelial cells (LECs) exposed to prolonged pathologically elevated lymph flow in vivo within the anatomic and physiologic context of a large animal model of congenital heart disease with increased pulmonary blood flow using in vitro approaches. To this end, late gestation fetal lambs underwent in utero placement of an aortopulmonary graft (shunt). Four weeks after birth, LECs were isolated and cultured from control and shunt lambs. Redox status and proliferation were quantified, and transcriptional profiling and metabolomic analyses were performed. Shunt LECs exhibited hyperproliferative growth driven by increased levels of Hypoxia Inducible Factor 1α (HIF-1α), along with upregulated expression of known HIF-1α target genes in response to mechanical stimuli and shear stress. Compared to control LECs, shunt LECs exhibited abnormal metabolism including abnormalities of glycolysis, the TCA cycle and aerobic respiration. In conclusion, LECs from lambs exposed in vivo to chronically increased pulmonary lymph flow are hyperproliferative, have enhanced expression of HIF-1α and its target genes, and demonstrate altered central carbon metabolism in vitro. Importantly, these findings suggest provocative therapeutic targets for patients with lymphatic abnormalities.


Assuntos
Células Endoteliais/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Linfa/fisiologia , Animais , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Feto/metabolismo , Cardiopatias Congênitas/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Vasos Linfáticos/metabolismo , Óxido Nítrico/metabolismo , Gravidez , Cultura Primária de Células , Circulação Pulmonar/fisiologia , Ovinos/metabolismo , Transdução de Sinais , Estresse Mecânico , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Pulm Circ ; 10(2): 2045894020922118, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32489641

RESUMO

The risk and progression of pulmonary vascular disease in patients with congenital heart disease is dependent on the hemodynamics associated with different lesions. However, the underlying mechanisms are not understood. Endothelin-1 is a potent vasoconstrictor that plays a key role in the pathology of pulmonary vascular disease. We utilized two ovine models of congenital heart disease: (1) fetal aortopulmonary graft placement (shunt), resulting in increased flow and pressure; and (2) fetal ligation of the left pulmonary artery resulting in increased flow and normal pressure to the right lung, to investigate the hypothesis that high pressure and flow, but not flow alone, upregulates endothelin-1 signaling. Lung tissue and pulmonary arterial endothelial cells were harvested from control, shunt, and the right lung of left pulmonary artery lambs at 3-7 weeks of age. We found that lung preproendothelin-1 mRNA and protein expression were increased in shunt lambs compared to controls. Preproendothelin-1 mRNA expression was modestly increased, and protein was unchanged in left pulmonary artery lambs. These changes resulted in increased lung endothelin-1 levels in shunt lambs, while left pulmonary artery levels were similar to controls. Pulmonary arterial endothelial cells exposed to increased shear stress decreased endothelin-1 levels by five-fold, while cyclic stretch increased levels by 1.5-fold. These data suggest that pressure or an additive effect of pressure and flow, rather than increased flow alone, is the principal driver of increased endothelin signaling in congenital heart disease. Defining the molecular drivers of the pathobiology of pulmonary vascular disease due to differing mechanical forces will allow for a more targeted therapeutic approach.

6.
PLoS Biol ; 16(10): e2005924, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30335746

RESUMO

The heart exhibits the highest basal oxygen (O2) consumption per tissue mass of any organ in the body and is uniquely dependent on aerobic metabolism to sustain contractile function. During acute hypoxic states, the body responds with a compensatory increase in cardiac output that further increases myocardial O2 demand, predisposing the heart to ischemic stress and myocardial dysfunction. Here, we test the utility of a novel engineered protein derived from the heme-based nitric oxide (NO)/oxygen (H-NOX) family of bacterial proteins as an O2 delivery biotherapeutic (Omniox-cardiovascular [OMX-CV]) for the hypoxic myocardium. Because of their unique binding characteristics, H-NOX-based variants effectively deliver O2 to hypoxic tissues, but not those at physiologic O2 tension. Additionally, H-NOX-based variants exhibit tunable binding that is specific for O2 with subphysiologic reactivity towards NO, circumventing a significant toxicity exhibited by hemoglobin (Hb)-based O2 carriers (HBOCs). Juvenile lambs were sedated, mechanically ventilated, and instrumented to measure cardiovascular parameters. Biventricular admittance catheters were inserted to perform pressure-volume (PV) analyses. Systemic hypoxia was induced by ventilation with 10% O2. Following 15 minutes of hypoxia, the lambs were treated with OMX-CV (200 mg/kg IV) or vehicle. Acute hypoxia induced significant increases in heart rate (HR), pulmonary blood flow (PBF), and pulmonary vascular resistance (PVR) (p < 0.05). At 1 hour, vehicle-treated lambs exhibited severe hypoxia and a significant decrease in biventricular contractile function. However, in OMX-CV-treated animals, myocardial oxygenation was improved without negatively impacting systemic or PVR, and both right ventricle (RV) and left ventricle (LV) contractile function were maintained at pre-hypoxic baseline levels. These data suggest that OMX-CV is a promising and safe O2 delivery biotherapeutic for the preservation of myocardial contractility in the setting of acute hypoxia.


Assuntos
Heme/uso terapêutico , Hipóxia/terapia , Oxigênio/uso terapêutico , Animais , Terapia Biológica/métodos , Coração/fisiologia , Frequência Cardíaca/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Pulmão , Contração Muscular/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Miocárdio/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/uso terapêutico , Oxigênio/metabolismo , Consumo de Oxigênio/fisiologia , Engenharia de Proteínas/métodos , Ovinos , Resistência Vascular/efeitos dos fármacos
7.
Am J Physiol Heart Circ Physiol ; 315(1): H173-H181, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29631374

RESUMO

Lymphatic abnormalities associated with congenital heart disease are well described, yet the underlying mechanisms remain poorly understood. Using a clinically relevant ovine model of congenital heart disease with increased pulmonary blood flow, we have previously demonstrated that lymphatic endothelial cells (LECs) exposed in vivo to chronically increased pulmonary lymph flow accumulate ROS and have decreased bioavailable nitric oxide (NO). Peroxisome proliferator-activated receptor-γ (PPAR-γ), which abrogates production of cellular ROS by NADPH oxidase, is inhibited by Krüppel-like factor 2 (KLF2), a flow-induced transcription factor. We hypothesized that chronically increased pulmonary lymph flow induces a KLF2-mediated decrease in PPAR-γ and an accumulation of cellular ROS, contributing to decreased bioavailable NO in LECs. To better understand the mechanisms that transduce the abnormal mechanical forces associated with chronically increased pulmonary lymph flow, LECs were isolated from the efferent vessel of the caudal mediastinal lymph node of control ( n = 5) and shunt ( n = 5) lambs. KLF2 mRNA and protein were significantly increased in shunt compared with control LECs, and PPAR-γ mRNA and protein were significantly decreased. In control LECs exposed to shear forces in vitro, we found similar alterations to KLF2 and PPAR-γ expression. In shunt LECs, NADPH oxidase subunit expression was increased, and bioavailable NO was significantly lower. Transfection of shunt LECs with KLF2 siRNA normalized PPAR-γ, ROS, and bioavailable NO. Conversely, pharmacological inhibition of PPAR-γ in control LECs increased ROS equivalent to levels in shunt LECs at baseline. Taken together, these data suggest that one mechanism by which NO-mediated lymphatic function is disrupted after chronic exposure to increased pulmonary lymph flow is through altered KLF2-dependent PPAR-γ signaling, resulting in increased NADPH oxidase activity, accumulation of ROS, and decreased bioavailable NO. NEW & NOTEWORTHY Lymphatic endothelial cells, when exposed in vivo to chronically elevated pulmonary lymph flow in a model of congenital heart disease with increased pulmonary blood flow, demonstrate Krüppel-like factor 2-dependent disrupted peroxisome proliferator-activated receptor-γ signaling that results in the accumulation of reactive oxygen species and decreased bioavailable nitric oxide.


Assuntos
Células Endoteliais/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Pulmão/fisiologia , Vasos Linfáticos/metabolismo , PPAR gama/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Feminino , Fatores de Transcrição Kruppel-Like/genética , Pulmão/metabolismo , Vasos Linfáticos/citologia , Vasos Linfáticos/fisiologia , Óxido Nítrico/metabolismo , PPAR gama/genética , Espécies Reativas de Oxigênio/metabolismo , Ovinos
8.
Curr Opin Pediatr ; 30(3): 319-325, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29528892

RESUMO

PURPOSE OF REVIEW: Heart failure is a rare but morbid diagnosis in the pediatric patient presenting to the emergency department (ED). Familiarity of the ED physician with the presentation, work-up, and management of pediatric heart failure is essential as accurate diagnosis is reliant on a high degree of suspicion. RECENT FINDINGS: Studies evaluating pediatric heart failure are limited by its rarity and the heterogeneity of underlying conditions. However, recent reports have provided new data on the epidemiology, presentation, and outcomes of children with heart failure. SUMMARY: The recent studies reviewed here highlight the significant diagnostic and management challenges that pediatric heart failure presents given the variety and lack of specificity of its presenting signs, symptoms, and diagnostic work-up. This review provides the ED physician with a framework for understanding of pediatric heart failure to allow for efficient diagnosis and management of these patients. The primary focus of this review is heart failure in structurally normal hearts.


Assuntos
Serviço Hospitalar de Emergência , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/terapia , Criança , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/fisiopatologia , Humanos
9.
Am J Physiol Heart Circ Physiol ; 311(1): H137-45, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27199125

RESUMO

Associated abnormalities of the lymphatic circulation are well described in congenital heart disease. However, their mechanisms remain poorly elucidated. Using a clinically relevant ovine model of a congenital cardiac defect with chronically increased pulmonary blood flow (shunt), we previously demonstrated that exposure to chronically elevated pulmonary lymph flow is associated with: 1) decreased bioavailable nitric oxide (NO) in pulmonary lymph; and 2) attenuated endothelium-dependent relaxation of thoracic duct rings, suggesting disrupted lymphatic endothelial NO signaling in shunt lambs. To further elucidate the mechanisms responsible for this altered NO signaling, primary lymphatic endothelial cells (LECs) were isolated from the efferent lymphatic of the caudal mediastinal node in 4-wk-old control and shunt lambs. We found that shunt LECs (n = 3) had decreased bioavailable NO and decreased endothelial nitric oxide synthase (eNOS) mRNA and protein expression compared with control LECs (n = 3). eNOS activity was also low in shunt LECs, but, interestingly, inducible nitric oxide synthase (iNOS) expression and activity were increased in shunt LECs, as were total cellular nitration, including eNOS-specific nitration, and accumulation of reactive oxygen species (ROS). Pharmacological inhibition of iNOS reduced ROS in shunt LECs to levels measured in control LECs. These data support the conclusion that NOS signaling is disrupted in the lymphatic endothelium of lambs exposed to chronically increased pulmonary blood and lymph flow and may contribute to decreased pulmonary lymphatic bioavailable NO.


Assuntos
Células Endoteliais/enzimologia , Cardiopatias Congênitas/enzimologia , Linfa/metabolismo , Doenças Linfáticas/enzimologia , Vasos Linfáticos/enzimologia , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo , Células Endoteliais/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/fisiopatologia , Doenças Linfáticas/etiologia , Doenças Linfáticas/fisiopatologia , Vasos Linfáticos/efeitos dos fármacos , Vasos Linfáticos/fisiopatologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/genética , Circulação Pulmonar , Espécies Reativas de Oxigênio/metabolismo , Ovinos , Transdução de Sinais , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...