Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38754825

RESUMO

The form of fat supplements, degree of saturation, and the fatty acid (FA) profile influence the cows' production response. The objective was to determine the effects of supplemental fats in the form of calcium salts of fatty acids (CSFA) with different ratios between palmitic (PA) and oleic (OA) acids on nutrient digestibility and cow performance. Forty-two dairy cows were assigned to 3 groups and fed (for 13 wk) rations that contained 2.2% CSFA (on a dry matter basis) with increasing the PA-to-OA ratio as follows: 1) CS45:35 - 45% PA and 35% OA, 2) CS60:30 - 60% PA and 30% OA, and 3) CS70:20 - 70% PA and 20% OA. Rumen and fecal samples were taken for volatile fatty acids (VFA) and digestibility measurements, respectively. Increasing the PA-to-OA ratio linearly decreased the milk and energy-corrected milk (ECM) yields, whereas a quadratic effect was observed for milk fat concentration (3.55, 3.94, and 3.87% in the CS45:35, CS60:30, and CS70:20 groups, respectively) and fat yield. Dry matter intake (DMI) was highest in the CS60:30 group (33.7 kg/d), and lowest in the CS70:20 group (31.6 kg/d), and a tendency of quadratic effect was observed for calculated energy balance with no difference in body weight gain among the groups. The milk-to-DMI ratio was decreased, and the ratio of ECM-to-DMI tended to decrease when the PA-to-OA ratio increased. The highest apparent total-tract digestibilities of dry matter, organic matter, and protein were observed in the CS60:30 cows, and neutral detergent fiber (NDF) tended to decrease with increasing the PA-to-OA ratio; however, digestibility of the total FA and FA subgroups (16 and 18-carbon FA) were not different among groups. Across treatments, the 18-carbon FA digestibility was higher than the 16-carbon FA digestibility. Under the current study conditions, the CS60:30 cows had the highest fat concentration and fat yield, energy output in milk, DMI, and digestibility of DM, OM, and protein. However, further research is required to fine-tune the optimal FA ratio in supplemental fat sources to maximize production and efficiency under various conditions, such as production level, stage of lactation, and diet composition.

2.
Sci Rep ; 13(1): 5280, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002295

RESUMO

Metabolic disorders are often linked to alterations in insulin signaling. Omega-3 (n-3) fatty acids modulate immunometabolic responses; thus, we examined the effects of peripartum n-3 on systemic and adipose tissue (AT)-specific insulin sensitivity, immune function, and the endocannabinoid system (ECS) in dairy cows. Cows were supplemented peripartum with saturated fat (CTL) or flaxseed supplement rich in alpha-linolenic acid (ALA). Blood immunometabolic biomarkers were examined, and at 5-8 d postpartum (PP), an intravenous glucose-tolerance-test (GTT) and AT biopsies were performed. Insulin sensitivity in AT was assessed by phosphoproteomics and proteomics. Peripartum n-3 reduced the plasma concentrations of Interleukin-6 (IL-6) and IL-17α, lowered the percentage of white blood cells PP, and reduced inflammatory proteins in AT. Systemic insulin sensitivity was higher in ALA than in CTL. In AT, the top canonical pathways, according to the differential phosphoproteome in ALA, were protein-kinase-A signaling and insulin-receptor signaling; network analysis and immunoblots validated the lower phosphorylation of protein kinase B (Akt), and lower abundance of insulin receptor, together suggesting reduced insulin sensitivity in ALA AT. The n-3 reduced the plasma concentrations of ECS-associated ligands, and lowered the abundances of cannabinoid-1-receptor and monoglycerol-lipase in peripheral blood mononuclear cells PP. Peripartum ALA supplementation in dairy cows improved systemic insulin sensitivity and immune function, reduced ECS components, and had tissue-specific effects on insulin-sensitivity in AT, possibly counter-balancing the systemic responses.


Assuntos
Resistência à Insulina , Feminino , Bovinos , Animais , Endocanabinoides/metabolismo , Ácido alfa-Linolênico/farmacologia , Ácido alfa-Linolênico/metabolismo , Leucócitos Mononucleares , Tecido Adiposo/metabolismo , Insulina/metabolismo , Inflamação/metabolismo , Lactação , Dieta/veterinária
3.
Metabolites ; 13(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36837930

RESUMO

Negative energy balance (EB) postpartum is associated with adverse outcomes in dairy cows; therefore, non-invasive biomarkers to measure EB are of particular interest. We determined whether specific metabolites, oxidative stress indicators, enzyme activity, and fatty acid (FA) profiles in milk can serve as indicators of negative EB. Forty-two multiparous Holstein dairy cows were divided at calving into 2 groups: one was milked 3 times daily and the other, twice a day for the first 30 d in milk (DIM). Cows were classified retrospectively as being in either negative EB (NEB, n = 19; the mean EB during the first 21 DIM were less than the overall median of -2.8 Mcal/d), or in positive EB (PEB, n = 21; the mean EB was ≥-2.8 Mcal/d). The daily milk yield, feed intake, and body weight were recorded individually. Blood samples were analyzed for metabolites and stress biomarkers. Milk samples were taken twice weekly from 5 to 45 DIM to analyze the milk solids, the FA profile, glucose, glucose-6-P (G6P), G6P-dehydrogenase (G6PDH) activity, malic and lactic acids, malondialdehyde (MDA), and oxygen radical antioxidant capacity (ORAC). The NEB cows produced 10.5% more milk, and consumed 7.6% less dry matter than the PEB cows. The plasma glucose concentration was greater and ß-hydroxybutyrate was lower in the PEB vs. the NEB cows. The average concentrations of milk glucose, G6P, malic and lactic acids, and MDA did not differ between groups; however, the G6PDH activity was higher and ORAC tended to be higher in the milk of NEB vs. the PEB cows. The correlation between milk G6PDH activity and EB was significant (r = -0.39). The percentages of oleic acid and total unsaturated FA in milk were higher for the NEB vs. the PEB cows. These findings indicate that G6PDH activity in milk is associated with NEB and that it can serve as a non-invasive candidate biomarker of NEB in postpartum cows, that should be validated in future studies.

4.
J Dairy Sci ; 106(4): 2395-2407, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36797184

RESUMO

The form of a lipid supplement, its degree of saturation, and its fatty acid (FA) profile greatly influence digestibility and cow productive response. The objective in this study was to examine the effect of fat supplements that differ in their form or FA profile on nutrient digestibility and cow performance. Forty-two mid-lactation cows (128 ± 53 d) were assigned to 3 treatment groups according to milk yield, days in milk, and body weight. For 13 wk, the cows were fed rations that contained (on a dry matter basis) (1) 2.4% of calcium salts of fatty acids (CSFA) consisting of 45% palmitic acid (PA) and 35% oleic acid (OA; CS45:35); (2) 2.4% of CSFA consisting of 80% PA and 10% OA (CS80:10); or (3) 2.0% of free FA consisting of 80% PA and 10% OA (FF80:10). Rumen samples were taken to measure the ammonia and volatile FA concentrations, and fecal samples were taken to measure the digestibility. Preplanned comparisons were CS45:35 versus CS80:10 to assess 2 CSFA supplements with different FA profiles, and CS80:10 versus FF80:10 to assess similar FA profiles in different forms. Compared with CS45:35, CS80:10 decreased the milk yields, increased the fat percentage, and tended to increase the energy-corrected milk (ECM) yields. The fat percentage of milk was highest in the FF80:10 cows (4.02%), intermediate in the CS80:10 cows (3.89%), and lowest in the CS45:35 cows (3.75%). Compared with CS80:10, FF80:10 increased milk yields (50.1 vs. 49.4 kg/d, respectively), tended to increase fat percentage, and increased 4% fat-corrected milk (4% FCM; 49.1 vs. 47.7 kg/d, respectively) and ECM yields (49.5 vs. 48.2 kg/d, respectively). Treatment had no effect on dry matter intake (DMI), and compared with CS80:10 cows, the calculated energy balance was lower in the FF80:10 cows. The 4% FCM/DMI and ECM/DMI ratios were higher in the FF80:10 group compared with the CS80:10 group. Compared with the CS80:10 cows, the FF80:10 cows had a lower rumen pH, higher propionate, lower acetate/propionate ratio, and higher total VFA. Compared with CS45:35 cows, the apparent total-tract digestibilities of neutral detergent fiber and acid detergent fiber were higher in CS80:10 cows; whereas, the apparent total-tract digestibilities of dry matter, organic matter, protein, neutral detergent fiber, and acid detergent fiber were higher in the CS80:10 cows compared with the FF80:10 cows. Compared with the CS80:10 group, the apparent digestibility of total FA was 13.0 percentage points lower in the FF80:10 cows (79.1 vs. 66.1%, respectively), and similarly, the digestibilities of 16-carbon and 18-carbon FA were lower in the FF80:10 cows than in the CS80:10 cows. In conclusion, the form, more than the FA profile of fat supplements, influenced digestibility. Further, the CSFA supplements were more digestible than the free fatty acids, regardless of the FA profile. However, energy partitioning toward production appeared to be higher in the FF80:10 cows, although the digestibility of nutrients was lower than in the CSFA product with a similar FA profile.


Assuntos
Dieta , Ácidos Graxos , Feminino , Bovinos , Animais , Ácidos Graxos/metabolismo , Dieta/veterinária , Detergentes/metabolismo , Propionatos/metabolismo , Digestão , Suplementos Nutricionais , Ácido Palmítico , Leite/metabolismo , Lactação , Ácidos Graxos não Esterificados/metabolismo , Ração Animal/análise
5.
J Anim Sci Biotechnol ; 13(1): 114, 2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36183098

RESUMO

BACKGROUND: Dietary supplementation of omega-3 fatty acids can reduce the activation of the endocannabinoid system (ECS) by decreasing the availability of arachidonic acid, thus lowering endocannabinoids (eCBs) levels. The ECS is a modulator of energy metabolism, stress response and inflammation in mammals, yet there is little information on the roles of the ECS in transition dairy cows. During the periparturient period, the adipose tissue and liver are the main metabolic organs that participate in the adaptations of dairy cows to onset of lactation; however, exceeded adipose tissue lipolysis and accumulation of lipids in the liver have adverse effects on cows' physiology. Here we aimed to examine whether omega-3 supplementation during the transition period will modulate ECS activation and affect metabolic and inflammatory indices in postpartum dairy cows, by supplementing twenty-eight transition Holstein dairy cows with either saturated fat (CTL) or encapsulated flaxseed oil (FLX). Components of the ECS, metabolic and inflammatory markers were measured in blood, liver, and subcutaneous adipose tissue. RESULTS: FLX supplementation reduced feed intake by 8.1% (P < 0.01) and reduced plasma levels of arachidonic acid (by 44.2%; P = 0.02) and anandamide (by 49.7%; P = 0.03) postpartum compared to CTL. The mRNA transcription levels of the cannabinoid receptor 1 (CNR1/CB1) tended to be lower (2.5 folds) in white blood cells of FLX than in CTL (P = 0.10), and protein abundance of ECS enzyme monoacylglycerol lipase was higher in peripheral blood mononuclear cells of FLX than in CTL (P = 0.04). In adipose tissue, palmitoylethanolamide levels were lower in FLX than in CTL (by 61.5%; P = 0.02), relative mRNA transcription of lipogenic genes were higher, and the protein abundance of cannabinoid receptor 2 (P = 0.08) and monoacylglycerol lipase (P = 0.10) tended to be higher in FLX compared to CTL. Hepatic 2-arachidonoylglycerol tended to be higher (by 73.1%; P = 0.07), and interlukin-6 mRNA transcription level was 1.5 folds lower in liver of FLX than in CTL (P = 0.03). CONCLUSIONS: Nutritional supplementation of omega-3 fatty acids seems to partly modulate ECS activation, which could be related to lower feed intake. The altered ECS components in blood, adipose tissue and liver are associated with moderate modulations in lipid metabolism in the adipose and inflammation in liver of peripartum dairy cows.

6.
J Anim Sci ; 100(9)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35921498

RESUMO

Monitoring cardiovascular and respiratory measurements corresponds to the precision livestock farming (PLF) objective to continuously monitor and assess dairy cows' welfare and health. Changes in heart rate, breathing rate, and oxygen saturation (SpO2) are valuable metrics in human and veterinary medicine to assess stress, pain, illness, and detect critical conditions. The common way to measure heart rate is either manually or with a stethoscope. Under research conditions, heart rate is usually measured with a sports watch chest belt. Breathing rate is obtained by counting the cow's flank movements which is a time-consuming and labor-intensive method that requires training and is prone to human error. No devices are available on the market that enable practical and easy pulse oximetry in farm animals. This study presents a wireless nose ring sensor system (NoRS) composed of thermal and photoplothysmography sensors that attach to the nostrils of four Holstein dairy cows. The NoRS's thermocouple measured the cow's nasal cavity air temperature; an optic sensor measured the IR (660 nm) and RED (660 nm) signals reflected from the cow's nasal septum. Breathing was calculated from the thermocouple signal's center frequency with a fast Fourier transformation or the signal peak count (i.e., oscillations). The breathing rate was compared to breathing observed by concurrently counting the flank movements. Heart rate and SpO2 were measured by integrated pulse oximetry and heart rate monitor module (MAX30101 TinyCircuit) assembled on the NoRS circuit. Heart rate was also measured with FFT and by counting the number of peaks from the optic sensor's raw IR and RED signals. These measures were compared to an off-the-shelf hand-held pulse oximeter's heart rate and SpO2 readings during the same time. The comparisons revealed highly significant correlations for the heart rate readings where the strength of the correlation was sensitive to the method. The correlation between breathing rate and the veterinarian's visual observations was low, albeit significant. Thus, inhale-exhale cycle counting constitutes a more precise approach than flank movement counts. The hand-held device's 96% SpO2 is compatible with near-saturation values expected in healthy cows. The mean NoRS SpO2 reading was 3% less. After further piloting under field conditions, the NoRS will require no animal restraining to automatically and continuously record cows' breathing rate, heart rate, and SpO2.


Monitoring cardiovascular and respiratory measurements responds to the precision livestock farming objective to continuously monitor and assess dairy cows' welfare and health. Changes in heart rate, breathing rate, and oxygen saturation are valuable metrics in human and veterinary medicine that are used to assess stress, pain, illness, and detect critical conditions. This article describes a wireless nose ring sensor system (NoRS) developed to read heart rate, breathing rate, and oxygen saturation from the cow's nostrils and tested on four Holstein dairy cows. These measures were compared to heart rate and oxygen saturation readings obtained from an off-the-shelf hand-held pulse oximeter and a veterinarian's concurrent count of flank movements. The comparison revealed highly significant correlations between the heart rate readings and a low, albeit significant correlation for breathing rate. The mean NoRS oxygen saturation reading was 3% less than the hand-held device. Although commonly used techniques for detecting vital parameters such as heart rate, breathing rate, and oxygen saturation only provide information about the time of examination, the NoRS is a wearable device that can monitor cardiovascular and respiratory measurements remotely and over time.


Assuntos
Oximetria , Taxa Respiratória , Animais , Bovinos , Fazendas , Feminino , Frequência Cardíaca , Humanos , Monitorização Fisiológica/veterinária , Oximetria/métodos , Oximetria/veterinária , Oxigênio
7.
Animals (Basel) ; 12(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36009672

RESUMO

Instability in grain prices led to continuing worldwide growth in the proportion of fat supplements in lactating cows' rations. However, fat supplementation was associated with decreases in feed intake, rumen fermentation, and feed digestibility. The present objectives were to test the effects of high-fat diets from calcium salts of palm oil fatty acids (CS-PFA) in lactating cow rations containing high proportions of concentrate, on feed intake, milk yields, rumen environment, and digestibility. Forty-two multiparous mid-lactation dairy cows were assigned to three treatments, designated as low fat (LF), moderate fat (MF), and high fat (HF) that contained (on DM basis), respectively, (i) 4.7% total fat with 1.7% CS-PFA, (ii) 5.8% total fat with 2.8% CS-PFA, and (iii) 6.8% total fat with 3.9% CS-PFA. Rumen samples were collected for pH, ammonia, and volatile fatty acid (VFA) measurements, and fecal grab samples were collected for digestibility measurements. A numerical trend of decreasing dry matter intake with increasing CS-PFA in diet was observed: 28.7, 28.5, and 28.1 kg/day in LF, MF, and HF, respectively (p < 0.20). No differences between treatments were observed in milk yields and milk-fat percentages, but protein percentage in milk tended to fall with increasing dietary CS-PFA content (p < 0.08), which resulted in 6.4% smaller protein yields in the HF than in the LF group (p < 0.01). Milk urea nitrogen was 15.3% higher in HF than in LF cows (p < 0.05). Rumen pH was higher at all sampling times in the MF and HF than in the LF cows. Concentrations of propionic acid and total VFA were higher in LF than in MF and HF cows. The apparent total-tract digestibility of dry matter was higher with LF than with HF (p < 0.002), and that of organic matter was lowest with the HF diet (p < 0.005). The apparent NDF digestibility declined with increasing dietary fat content, and it was 8.5 percentage points lower in HF than in LF cows (p < 0.009). Apparent fat digestibility increased with increasing dietary fat content, and it was higher by 10.4 percentage points in the HF than in the LF group (p < 0.004). In conclusion, diets with high concentrate-to-forage ratios, containing up to 6.8% total fat and 3.9% CS-PFA, negatively affected rumen fermentation and NDF digestibility in high-yielding dairy cows; however, the effects on yields were minor, indicating that, under specific circumstances, the inclusion of large amounts of CS-PFA in dairy cows' rations with low fiber content is feasible.

8.
Sci Rep ; 12(1): 9721, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35697844

RESUMO

The improvement of nutrient utilization efficiency in dairy cows represents an important task in view of the current rising demand for animal products and sustainable resource usage. In this perspective, the identification of appropriate markers to identify the most efficient animals for dairy production becomes a crucial factor. Residual feed intake (RFI), which represents the difference between predicted and actual intake, is used to define the efficiency of cows. In this study, subcutaneous adipose tissue (AT) was collected from five high efficient (HEF) and five low efficient (LEF) mid-lactation Holstein dairy cows, that represented subgroups of the 20% lowest RFI values (HEF) and highest 20% RFI values (LEF), out of a cohort of 155 cows that were examined for feed efficiency at the individual dairy barn at Volcani Institute, Israel. Adipose samples were examined for proteomic analysis by nano-LC/MS-MS and gene expression by RT-PCR. A total of 101 differential proteins (P ≤ 0.05 and fold change ± 1.5) and two protein networks related to feed efficiency were found between HEF and LEF cows. Among the enriched top canonical pathways, FAT10 signaling, EIF2 signaling, Sirtuin signaling, Acute phase response signaling, Protein ubiquitination and mTOR signaling pathways were related to feed efficiency in AT. Furthermore, abundance of transferrin (TF; FC = 78.35, P = 0.02) enriched pathways, including mTOR signaling, LXR/RXR and FXR/RXR activation was found in AT of HEF cows. Relative mRNA expression of RBM39, which is involved in energy metabolism, was decreased in AT of HEF versus LEF. The relationship found between the AT proteins and/or metabolic pathways and the feed efficiency demonstrates that AT may reflect metabolic adaptations to high efficiency, and suggests that these proteins together with their metabolic mechanisms are suitable candidates as biomarkers to identify efficient cows for dairy production.


Assuntos
Ração Animal , Lactação , Tecido Adiposo , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Feminino , Humanos , Leite , Proteômica , Serina-Treonina Quinases TOR
9.
Animals (Basel) ; 12(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35327191

RESUMO

Environmental heat load (HL) adversely affects the performance of dairy cows. The endocannabinoid system (ECS) regulates metabolism and the stress response, thus we hypothesized that HL may affect the ECS of dairy cows. Our objective was to determine the levels of endocannabinoids (eCBs) and gene and protein expressions of the ECS components in adipose tissue (AT) and plasma of early postpartum (PP) and late-lactation cows. In addition, we examined eCBs in milk, and studied the interaction of eCBs with bovine cannabinoids receptors CB1 and CB2. In the first experiment, plasma and AT were sampled from cows calving during summer (S, n = 9) or winter (W, n = 9). Dry matter intake (DMI) and energy balance (EB) were lower in S vs. W, and relative gene expressions of transient-receptor-potential-cation-channel-subfamily-V-member-1 (TRPV1), the cannabinoid receptors CNR1 (CB1) and CNR2 (CB2), and monoglyceride lipase (MGLL) were decreased in AT of S compared to W. Protein abundance of peroxisome proliferator-activated-receptor-alpha (PPAR-α) was decreased, while tumor-necrosis factor-α (TNF-α) was increased in AT of S vs. W. Other components of the ECS were not different between S and W calving cows. To study whether the degree of HL may affect the ECS, we performed a second experiment with 24 late-lactation cows that were either cooled (CL) or not cooled (heat-stressed; HS) during summer. DMI was lower in HS vs. CL, AT protein abundance of PPAR-α was lower, and TRPV1 tended to be lower in HS vs. CL, but other components of the ECS were not different between groups. Milk levels of 2-arachidonoylglycerol (2-AG) tended to increase in HS vs. CL. Additionally, modeling of the bovine cannabinoid receptors demonstrated their binding to anandamide and 2-AG. Environmental HL, possibly via lower intake, is associated with limited alterations in ECS components in AT of dairy cows.

10.
Data Brief ; 39: 107517, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34765708

RESUMO

This article contains raw and processed data related to research published by Swartz et al. [1]. We present proteomics data from liver of postpartum dairy cows that were obtained by liquid chromatography-mass spectrometry following protein extraction. Differential abundance between liver of cows experiencing either negative energy balance (NEB, n = 6) or positive energy balance (PEB, n = 4) at 17 ± 3 days in lactation was quantified using MS1 intensity based label-free. There is a paucity of studies examining the associations of NEB with the liver proteome in early lactation dairy cows. Therefore, our objective was to examine the differences in the liver proteome in periparturient dairy cows experiencing naturally occurring NEB compared to cows in PEB. In this study, multiparous Holstein dairy cows were milked either 2 or 3 times daily for the first 30 days in milk (DIM) to alter energy balance, and were classified retrospectively as NEB (n = 18) or PEB (n = 22). We collected liver biopsies from 10 cows (n = 5 from each milking frequency), that were retrospectively classified according to their energy balance (NEB, n = 6; PEB, n = 4). The liver proteome was characterized using label-free quantitative shotgun proteomics. This novel dataset contains 2,741 proteins were identified, and 68 of those were differentially abundant between NEB and PEB (P ≤ 0.05 and FC± 1.5); these findings are discussed in our recent research article [1]. The present dataset of liver proteome can be used as either biological markers for disease or therapeutic targets to improve metabolic adaptations to lactation in postpartum dairy cattle. Data are available via ProteomeXchange with identifier PXD028124.

11.
J Proteomics ; 246: 104308, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34153542

RESUMO

Negative energy balance (NEB) is associated with metabolic disorders in early lactation dairy cows. Therefore, our objective was to characterize the liver proteome in cows experiencing either NEB or positive energy balance (PEB). Forty-two multiparous Holstein dairy cows were milked either 2 or 3 times daily for the first 30 days in milk (DIM) to alter EB, and were classified retrospectively as NEB (n = 18) or PEB (n = 22). Liver biopsies were collected from 10 cows (n = 5 from each milking frequency) at 17 ± 3 DIM (NEB, n = 6; PEB, n = 4). The liver proteome was characterized using label-free quantitative shotgun proteomics and Ingenuity Pathway Analysis used to identify key affected canonical pathways. Overall, 2741 proteins were identified, and 68 of those were differentially abundant (P ≤ 0.05 and FC ± 1.5). ENO3 (FC = 10.3, P < 0.01) and FABP5 (FC = -12.5, P = 0.045) were the most dramatically upregulated and downregulated proteins, respectively, in NEB cows. Numerous mitochondrial proteins (NDUFA5, NDUFS3, NDUFA6, COX7A2L, COX6C, and COA5) were differentially abundant. Canonical pathways associated with NEB were LPS/IL-1 mediated inhibition of RXR function, oxidative phosphorylation, and mitochondrial dysfunction. Additionally, cows experiencing NEB had less hepatic IL10 transcript abundance than PEB. Together, NEB was associated with altered hepatic inflammatory status, likely due to oxidative stress from mitochondrial dysfunction. SIGNIFICANCE: Our manuscript describes the associations of negative energy balance with the liver proteome in early lactation dairy cows, when metabolic stress and the incidence of diseases is increased. Specifically, we found associations of negative energy balance with shifts in hepatic protein abundance involved in fatty acid uptake, impaired anti-inflammatory responses, and mitochondrial dysfunction. Moving forward, differentially abundant proteins found in this study may be useful as either biological markers for disease or therapeutic targets to improve metabolic adaptations to lactation in postpartum dairy cattle.


Assuntos
Lactação , Proteoma , Animais , Bovinos , Metabolismo Energético , Feminino , Fígado , Leite , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...