Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 63(21): 215019, 2018 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30372420

RESUMO

Margins are employed in radiotherapy treatment planning to mitigate the dosimetric effects of geometric uncertainties for the clinical target volume (CTV). Unfortunately, whilst the use of margins can increase the probability that sufficient dose is delivered to the CTV, it can also result in delivering high dose of radiation to surrounding organs at risk (OARs). We expand on our previous work on beam-dependent margins and propose a novel adaptive margin concept, where margins are moulded away from selected OARs for better OAR-high-dose sparing, whilst maintaining similar dose coverage probability to the CTV. This, however, comes at a cost of a larger irradiation volume, and thus can negatively impact other structures. We investigate the impact of the adaptive margin concept when applied to prostate radiotherapy treatments, and compare treatment plans generated using our beam-dependent margins without adaptation, with adaption from the rectum and with adaptation from both the rectum and bladder. Five prostate patients were used in this planning study. All plans achieved similar dose coverage probability, and were able to ensure at least 90% population coverage with the target receiving at least 95% of the prescribed dose to [Formula: see text]. We observed overall better high-dose sparing to OARs that were considered when using the adapted beam-dependent PTVs, with the degree of sparing dependent on both the number of OARs under consideration as well as the relative position between the CTV and the OARs.


Assuntos
Órgãos em Risco/efeitos da radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Masculino , Probabilidade , Neoplasias da Próstata/radioterapia , Radiometria , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada , Reto/efeitos da radiação , Incerteza
2.
Phys Med Biol ; 63(14): 145007, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29882749

RESUMO

Owing to its excellent soft-tissue contrast, magnetic resonance (MR) imaging has found an increased application in radiation therapy (RT). By harnessing these properties for treatment planning, automated segmentation methods can alleviate the manual workload burden to the clinical workflow. We investigated atlas-based segmentation methods of organs at risk (OARs) in the head and neck (H&N) region using one approach that selected the most similar atlas from a library of segmented images and two multi-atlas approaches. The latter were based on weighted majority voting and an iterative atlas-fusion approach called STEPS. We built the atlas library from pre-treatment T1-weighted MR images of 12 patients with manual contours of the parotids, spinal cord and mandible, delineated by a clinician. Following a leave-one-out cross-validation strategy, we measured the geometric accuracy by calculating Dice similarity coefficients (DSC), standard and 95% Hausdorff distances (HD and HD95), and the mean surface distance (MSD), whereby the manual contours served as the gold standard. To benchmark the algorithm, we determined the inter-observer variability (IOV) between three observers. To investigate the dosimetric effect of segmentation inaccuracies, we implemented an auto-planning strategy within the treatment planning system Monaco (Elekta AB, Stockholm, Sweden). For each set of auto-segmented OARs, we generated a plan for a 9-beam step and shoot intensity modulated RT treatment, designed according to our institution's clinical H&N protocol. Superimposing the dose distributions on the gold standard OARs, we calculated dose differences to OARs caused by delineation differences between auto-segmented and gold standard OARs. We investigated the correlations between geometric and dosimetric differences. The mean DSC was larger than 0.8 and the mean MSD smaller than 2 mm for the multi-atlas approaches, resulting in a geometric accuracy comparable to previously published results and within the range of the IOV. While dosimetric differences could be as large as 23% of the clinical goal, treatment plans fulfilled all imposed clinical goals for the gold standard OARs. Correlations between geometric and dosimetric measures were low with R2 < 0.5. The geometric accuracy and the ability to achieve clinically acceptable treatment plans indicate the suitability of using atlas-based contours for RT treatment planning purposes. The low correlations between geometric and dosimetric measures suggest that geometric measures alone are not sufficient to predict the dosimetric impact of segmentation inaccuracies on treatment planning for the data utilised in this study.


Assuntos
Algoritmos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Órgãos em Risco/efeitos da radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Variações Dependentes do Observador , Radiometria , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
3.
Phys Med Biol ; 62(12): 4917-4928, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28379156

RESUMO

Radiotherapy treatment planning for use with high-energy photon beams currently employs a binary approach in defining the planning target volume (PTV). We propose a margin concept that takes the beam directions into account, generating beam-dependent PTVs (bdPTVs) on a beam-by-beam basis. The resulting degree of overlaps between the bdPTVs are used within the optimisation process; the optimiser effectively considers the same voxel to be both target and organ at risk (OAR) with fractional contributions. We investigate the impact of this novel approach when applied to prostate radiotherapy treatments, and compare treatment plans generated using beam dependent margins to conventional margins. Five prostate patients were used in this planning study, and plans using beam dependent margins improved the sparing of high doses to target-surrounding OARs, though a trade-off in delivering additional low dose to the OARs can be observed. Plans using beam dependent margins are observed to have a slightly reduced target coverage. Nevertheless, all plans are able to satisfy 90% population coverage with the target receiving at least 95% of the prescribed dose to [Formula: see text].


Assuntos
Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Masculino , Órgãos em Risco/efeitos da radiação , Fótons/efeitos adversos , Fótons/uso terapêutico , Probabilidade , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica
4.
Phys Med Biol ; 61(4): 1546-62, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26816273

RESUMO

By adapting to the actual patient anatomy during treatment, tracked multi-leaf collimator (MLC) treatment deliveries offer an opportunity for margin reduction and healthy tissue sparing. This is assumed to be especially relevant for hypofractionated protocols in which intrafractional motion does not easily average out. In order to confidently deliver tracked treatments with potentially reduced margins, it is necessary to monitor not only the patient anatomy but also the actually delivered dose during irradiation. In this study, we present a novel real-time online dose reconstruction tool which calculates actually delivered dose based on pre-calculated dose influence data in less than 10 ms at a rate of 25 Hz. Using this tool we investigate the impact of clinical target volume (CTV) to planning target volume (PTV) margins on CTV coverage and organ-at-risk dose. On our research linear accelerator, a set of four different CTV-to-PTV margins were tested for three patient cases subject to four different motion conditions. Based on this data, we can conclude that tracking eliminates dose cold spots which can occur in the CTV during conventional deliveries even for the smallest CTV-to-PTV margin of 1 mm. Changes of organ-at-risk dose do occur frequently during MLC tracking and are not negligible in some cases. Intrafractional dose reconstruction is expected to become an important element in any attempt of re-planning the treatment plan during the delivery based on the observed anatomy of the day.


Assuntos
Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Humanos , Masculino , Movimento (Física) , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...