Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Dev ; 36(11-12): 652-663, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35835508

RESUMO

Congenital heart defects (CHDs) are among the most common birth defects, but their etiology has long been mysterious. In recent decades, the development of a variety of experimental models has led to a greater understanding of the molecular basis of CHDs. In this review, we contrast mouse models of CHD, which maintain the anatomical arrangement of the heart, and human cellular models of CHD, which are more likely to capture human-specific biology but lack anatomical structure. We also discuss the recent development of cardiac organoids, which are a promising step toward more anatomically informative human models of CHD.


Assuntos
Cardiopatias Congênitas , Organoides , Animais , Modelos Animais de Doenças , Coração , Cardiopatias Congênitas/genética , Humanos , Camundongos
2.
Nature ; 602(7895): 129-134, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35082446

RESUMO

Differentiation proceeds along a continuum of increasingly fate-restricted intermediates, referred to as canalization1,2. Canalization is essential for stabilizing cell fate, but the mechanisms that underlie robust canalization are unclear. Here we show that the BRG1/BRM-associated factor (BAF) chromatin-remodelling complex ATPase gene Brm safeguards cell identity during directed cardiogenesis of mouse embryonic stem cells. Despite the establishment of a well-differentiated precardiac mesoderm, Brm-/- cells predominantly became neural precursors, violating germ layer assignment. Trajectory inference showed a sudden acquisition of a non-mesodermal identity in Brm-/- cells. Mechanistically, the loss of Brm prevented de novo accessibility of primed cardiac enhancers while increasing the expression of neurogenic factor POU3F1, preventing the binding of the neural suppressor REST and shifting the composition of BRG1 complexes. The identity switch caused by the Brm mutation was overcome by increasing BMP4 levels during mesoderm induction. Mathematical modelling supports these observations and demonstrates that Brm deletion affects cell fate trajectory by modifying saddle-node bifurcations2. In the mouse embryo, Brm deletion exacerbated mesoderm-deleted Brg1-mutant phenotypes, severely compromising cardiogenesis, and reveals an in vivo role for Brm. Our results show that Brm is a compensable safeguard of the fidelity of mesoderm chromatin states, and support a model in which developmental canalization is not a rigid irreversible path, but a highly plastic trajectory.


Assuntos
Diferenciação Celular , Linhagem da Célula , Mesoderma/citologia , Mesoderma/metabolismo , Miócitos Cardíacos/citologia , Fatores de Transcrição/metabolismo , Animais , Proteína Morfogenética Óssea 4/metabolismo , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , DNA Helicases/metabolismo , Embrião de Mamíferos , Epigênese Genética , Feminino , Regulação da Expressão Gênica , Masculino , Camundongos , Miocárdio/metabolismo , Neurogênese , Neurônios/citologia , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Fator 6 de Transcrição de Octâmero/metabolismo , Fenótipo , Proteínas Repressoras/metabolismo , Células-Tronco/citologia , Fatores de Tempo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
3.
Int J Mol Sci ; 23(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35008427

RESUMO

BACKGROUND/AIMS: Epigenetic regulation is considered the main molecular mechanism underlying the developmental origin of health and disease's (DOHAD) hypothesis. Previous studies that have investigated the role of paternal exercise on the metabolic health of the offspring did not control for the amount and intensity of the training or possible effects of adaptation to exercise and produced conflicting results regarding the benefits of parental exercise to the next generation. We employed a precisely regulated exercise regimen to study the transgenerational inheritance of improved metabolic health. METHODS: We subjected male mice to a well-controlled exercise -training program to investigate the effects of paternal exercise on glucose tolerance and insulin sensitivity in their adult progeny. To investigate the molecular mechanisms of epigenetic inheritance, we determined chromatin markers in the skeletal muscle of the offspring and the paternal sperm. RESULTS: Offspring of trained male mice exhibited improved glucose homeostasis and insulin sensitivity. Paternal exercise modulated the DNA methylation profile of PI3Kca and the imprinted H19/Igf2 locus at specific differentially methylated regions (DMRs) in the skeletal muscle of the offspring, which affected their gene expression. Remarkably, a similar DNA methylation profile at the PI3Kca, H19, and Igf2 genes was present in the progenitor sperm indicating that exercise-induced epigenetic changes that occurred during germ cell development contributed to transgenerational transmission. CONCLUSION: Paternal exercise might be considered as a strategy that could promote metabolic health in the offspring as the benefits can be inherited transgenerationally.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/genética , Metilação de DNA , Resistência à Insulina/genética , Fator de Crescimento Insulin-Like II/genética , Condicionamento Físico Animal/métodos , RNA Longo não Codificante/genética , Espermatozoides/química , Animais , Epigênese Genética , Feminino , Teste de Tolerância a Glucose , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Camundongos , Modelos Animais , Consumo de Oxigênio , Herança Paterna , Análise de Sequência de DNA , Espermatozoides/metabolismo
4.
Nat Commun ; 11(1): 5612, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154377

RESUMO

Current models propose that boundaries of mammalian topologically associating domains (TADs) arise from the ability of the CTCF protein to stop extrusion of chromatin loops by cohesin. While the orientation of CTCF motifs determines which pairs of CTCF sites preferentially stabilize loops, the molecular basis of this polarity remains unclear. By combining ChIP-seq and single molecule live imaging we report that CTCF positions cohesin, but does not control its overall binding dynamics on chromatin. Using an inducible complementation system, we find that CTCF mutants lacking the N-terminus cannot insulate TADs properly. Cohesin remains at CTCF sites in this mutant, albeit with reduced enrichment. Given the orientation of CTCF motifs presents the N-terminus towards cohesin as it translocates from the interior of TADs, these observations explain how the orientation of CTCF binding sites translates into genome folding patterns.


Assuntos
Fator de Ligação a CCCTC/química , Fator de Ligação a CCCTC/metabolismo , Cromossomos de Mamíferos/química , Motivos de Aminoácidos , Animais , Sítios de Ligação , Fator de Ligação a CCCTC/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos de Mamíferos/genética , Cromossomos de Mamíferos/metabolismo , Cricetinae , Drosophila , Camundongos , Mutação , Motivos de Nucleotídeos , Ligação Proteica , Relação Estrutura-Atividade , Coesinas
5.
J Clin Invest ; 129(1): 209-214, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30352048

RESUMO

The loss of insulin-secreting ß cells is characteristic among type I and type II diabetes. Stimulating proliferation to expand sources of ß cells for transplantation remains a challenge because adult ß cells do not proliferate readily. The cell cycle inhibitor p57 has been shown to control cell division in human ß cells. Expression of p57 is regulated by the DNA methylation status of the imprinting control region 2 (ICR2), which is commonly hypomethylated in Beckwith-Wiedemann syndrome patients who exhibit massive ß cell proliferation. We hypothesized that targeted demethylation of the ICR2 using a transcription activator-like effector protein fused to the catalytic domain of TET1 (ICR2-TET1) would repress p57 expression and promote cell proliferation. We report here that overexpression of ICR2-TET1 in human fibroblasts reduces p57 expression levels and increases proliferation. Furthermore, human islets overexpressing ICR2-TET1 exhibit repression of p57 with concomitant upregulation of Ki-67 while maintaining glucose-sensing functionality. When transplanted into diabetic, immunodeficient mice, the epigenetically edited islets show increased ß cell replication compared with control islets. These findings demonstrate that epigenetic editing is a promising tool for inducing ß cell proliferation, which may one day alleviate the scarcity of transplantable ß cells for the treatment of diabetes.


Assuntos
Síndrome de Beckwith-Wiedemann/metabolismo , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p57/biossíntese , Desmetilação do DNA , Loci Gênicos , Células Secretoras de Insulina/metabolismo , Regulação para Cima , Síndrome de Beckwith-Wiedemann/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Células Secretoras de Insulina/patologia , Antígeno Ki-67/biossíntese
6.
Diabetes ; 67(9): 1807-1815, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30084829

RESUMO

Type 2 diabetes mellitus (T2DM) is characterized by the inability of the insulin-producing ß-cells to overcome insulin resistance. We previously identified an imprinted region on chromosome 14, the DLK1-MEG3 locus, as being downregulated in islets from humans with T2DM. In this study, using targeted epigenetic modifiers, we prove that increased methylation at the promoter of Meg3 in mouse ßTC6 ß-cells results in decreased transcription of the maternal transcripts associated with this locus. As a result, the sensitivity of ß-cells to cytokine-mediated oxidative stress was increased. Additionally, we demonstrate that an evolutionarily conserved intronic region at the MEG3 locus can function as an enhancer in ßTC6 ß-cells. Using circular chromosome conformation capture followed by high-throughput sequencing, we demonstrate that the promoter of MEG3 physically interacts with this novel enhancer and other putative regulatory elements in this imprinted region in human islets. Remarkably, this enhancer is bound in an allele-specific manner by the transcription factors FOXA2, PDX1, and NKX2.2. Overall, these data suggest that the intronic MEG3 enhancer plays an important role in the regulation of allele-specific expression at the imprinted DLK1-MEG3 locus in human ß-cells, which in turn impacts the sensitivity of ß-cells to cytokine-mediated oxidative stress.


Assuntos
Metilação de DNA , Diabetes Mellitus Tipo 2/metabolismo , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Ilhotas Pancreáticas/metabolismo , Proteínas de Membrana/metabolismo , Regiões Promotoras Genéticas , RNA Longo não Codificante/metabolismo , Animais , Proteínas de Ligação ao Cálcio , Linhagem Celular , Citocinas/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/química , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Diabetes Mellitus Tipo 2/patologia , Elementos Facilitadores Genéticos , Epigênese Genética , Loci Gênicos , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Ilhotas Pancreáticas/patologia , Região de Controle de Locus Gênico , Proteínas de Membrana/genética , Camundongos , Mutação , Proteínas Nucleares , Estresse Oxidativo/efeitos dos fármacos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Bancos de Tecidos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
J Clin Invest ; 127(1): 215-229, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27941246

RESUMO

The recognition of ß cell dedifferentiation in type 2 diabetes raises the translational relevance of mechanisms that direct and maintain ß cell identity. LIM domain-binding protein 1 (LDB1) nucleates multimeric transcriptional complexes and establishes promoter-enhancer looping, thereby directing fate assignment and maturation of progenitor populations. Many terminally differentiated endocrine cell types, however, remain enriched for LDB1, but its role is unknown. Here, we have demonstrated a requirement for LDB1 in maintaining the terminally differentiated status of pancreatic ß cells. Inducible ablation of LDB1 in mature ß cells impaired insulin secretion and glucose homeostasis. Transcriptomic analysis of LDB1-depleted ß cells revealed the collapse of the terminally differentiated gene program, indicated by a loss of ß cell identity genes and induction of the endocrine progenitor factor neurogenin 3 (NEUROG3). Lineage tracing confirmed that LDB1-depleted, insulin-negative ß cells express NEUROG3 but do not adopt alternate endocrine cell fates. In primary mouse islets, LDB1 and its LIM homeodomain-binding partner islet 1 (ISL1) were coenriched at chromatin sites occupied by pancreatic and duodenal homeobox 1 (PDX1), NK6 homeobox 1 (NKX6.1), forkhead box A2 (FOXA2), and NK2 homeobox 2 (NKX2.2) - factors that co-occupy active enhancers in 3D chromatin domains in human islets. Indeed, LDB1 was enriched at active enhancers in human islets. Thus, LDB1 maintains the terminally differentiated state of ß cells and is a component of active enhancers in both murine and human islets.


Assuntos
Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas com Domínio LIM/metabolismo , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação a DNA/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células Secretoras de Insulina/patologia , Proteínas com Domínio LIM/genética , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra
8.
Artigo em Inglês | MEDLINE | ID: mdl-26236400

RESUMO

BACKGROUND: DNA methylation has emerged as an important regulator of development and disease, necessitating the design of more efficient and cost-effective methods for detecting and quantifying this epigenetic modification. Next-generation sequencing (NGS) techniques offer single base resolution of CpG methylation levels with high statistical significance, but are also high cost if performed genome-wide. Here, we describe a simplified targeted bisulfite sequencing approach in which DNA sequencing libraries are prepared following sodium bisulfite conversion and two rounds of PCR for target enrichment and sample barcoding, termed BisPCR(2). RESULTS: We have applied the BisPCR(2) technique to validate differential methylation at several type 2 diabetes risk loci identified in genome-wide studies of human islets. We confirmed some previous findings while not others, in addition to identifying novel differentially methylated CpGs at these genes of interest, due to the much higher depth of sequencing coverage in BisPCR(2) compared to prior array-based approaches. CONCLUSION: This study presents a robust, efficient, and cost-effective technique for targeted bisulfite NGS, and illustrates its utility by reanalysis of prior findings from genome-wide studies.

9.
Front Genet ; 5: 200, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25071830

RESUMO

Diabetes mellitus represents a group of complex metabolic diseases that result in impaired glucose homeostasis, which includes destruction of ß-cells or the failure of these insulin-secreting cells to compensate for increased metabolic demand. Despite a strong interest in characterizing the transcriptome of the different human islet cell types to understand the molecular basis of diabetes, very little attention has been paid to the role of long non-coding RNAs (lncRNAs) and their contribution to this disease. Here we summarize the growing evidence for the potential role of these lncRNAs in ß-cell function and dysregulation in diabetes, with a focus on imprinted genomic loci.

10.
Cell Metab ; 19(1): 135-45, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24374217

RESUMO

Type 2 diabetes mellitus (T2DM) is a complex disease characterized by the inability of the insulin-producing ß cells in the endocrine pancreas to overcome insulin resistance in peripheral tissues. To determine if microRNAs are involved in the pathogenesis of human T2DM, we sequenced the small RNAs of human islets from diabetic and nondiabetic organ donors. We identified a cluster of microRNAs in an imprinted locus on human chromosome 14q32 that is highly and specifically expressed in human ß cells and dramatically downregulated in islets from T2DM organ donors. The downregulation of this locus strongly correlates with hypermethylation of its promoter. Using HITS-CLIP for the essential RISC-component Argonaute, we identified disease-relevant targets of the chromosome 14q32 microRNAs, such as IAPP and TP53INP1, that cause increased ß cell apoptosis upon overexpression in human islets. Our results support a role for microRNAs and their epigenetic control by DNA methylation in the pathogenesis of T2DM.


Assuntos
Diabetes Mellitus Tipo 2/genética , Epigênese Genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Proteínas de Membrana/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Adulto , Sequência de Bases , Proteínas de Ligação ao Cálcio , Cromossomos Humanos Par 14/genética , Regulação para Baixo/genética , Feminino , Perfilação da Expressão Gênica , Impressão Genômica , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Proteínas de Membrana/metabolismo , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Dados de Sequência Molecular , Regiões Promotoras Genéticas , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Adulto Jovem
11.
BMC Genomics ; 14: 264, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-23597149

RESUMO

BACKGROUND: Validation of physiologic miRNA targets has been met with significant challenges. We employed HITS-CLIP to identify which miRNAs participate in liver regeneration, and to identify their target mRNAs. RESULTS: miRNA recruitment to the RISC is highly dynamic, changing more than five-fold for several miRNAs. miRNA recruitment to the RISC did not correlate with changes in overall miRNA expression for these dynamically recruited miRNAs, emphasizing the necessity to determine miRNA recruitment to the RISC in order to fully assess the impact of miRNA regulation. We incorporated RNA-seq quantification of total mRNA to identify expression-weighted Ago footprints, and developed a microRNA regulatory element (MRE) prediction algorithm that represents a greater than 20-fold refinement over computational methods alone. These high confidence MREs were used to generate candidate 'competing endogenous RNA' (ceRNA) networks. CONCLUSION: HITS-CLIP analysis provide novel insights into global miRNA:mRNA relationships in the regenerating liver.


Assuntos
Regeneração Hepática/genética , MicroRNAs/genética , RNA Mensageiro/metabolismo , Animais , Ciclo Celular , Redes Reguladoras de Genes , Imunoprecipitação/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Complexo de Inativação Induzido por RNA/genética
12.
J Exp Med ; 208(11): 2321-33, 2011 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-22006976

RESUMO

The Th17 cells use the retinoid-related orphan receptor-γ (Rorg or Rorc) to specify their differentiation and lineage-specific function. However, how Rorg is switched on during Th17 differentiation is unknown. We report here that c-Rel and RelA/p65 transcription factors drive Th17 differentiation by binding to and activating two distinct Rorg promoters that control RORγT and RORγ expression, respectively. Similar to RORγT, RORγ is selectively expressed in Th17 cells and is effective in specifying the Th17 phenotype. T cells deficient in c-Rel or RelA are significantly compromised in Th17 differentiation, and c-Rel-deficient mice are defective in Th17 responses. Thus, Th17 immunity is controlled by a Rel-RORγ-RORγT axis, and strategies targeting Rel/NF-κB can be effective for controlling Th17 cell-mediated diseases.


Assuntos
Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Proteínas Proto-Oncogênicas c-rel/imunologia , Células Th17/imunologia , Transcrição Gênica , Animais , Diferenciação Celular/imunologia , Humanos , Interleucina-17/genética , Interleucina-17/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-rel/genética , Transdução de Sinais/imunologia , Células Th17/fisiologia , Fator de Transcrição RelA/imunologia
13.
Proc Natl Acad Sci U S A ; 108(29): 12030-5, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21730150

RESUMO

Death of pancreatic ß cells is a pathological hallmark of type 1 diabetes (T1D). However, the molecular mechanisms of ß cell death and its regulation are poorly understood. Here we describe a unique regulatory pathway of ß cell death that comprises microRNA-21, its target tumor suppressor PDCD4, and its upstream transcriptional activator nuclear factor-κB (NF-κB). In pancreatic ß cells, c-Rel and p65 of the NF-κB family activated the mir21 gene promoter and increased miR-21 RNA levels; miR-21 in turn decreased the level of PDCD4, which is able to induce cell death through the Bax family of apoptotic proteins. Consequently, PDCD4 deficiency in pancreatic ß cells renders them resistant to death, and PDCD4 deficiency in NOD or C57BL/6 mice conferred resistance to spontaneous diabetes and diabetes induced by autoimmune T cells or the ß cell toxin streptozotocin (STZ). Thus, the NF-κB-microRNA-21-PDCD4 axis plays a crucial role in T1D and represents a unique therapeutic target for treating the disease.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Morte Celular/fisiologia , Diabetes Mellitus Tipo 1/imunologia , Regulação da Expressão Gênica/imunologia , Células Secretoras de Insulina/fisiologia , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Proteínas de Ligação a RNA/metabolismo , Análise de Variância , Animais , Proteínas Reguladoras de Apoptose/deficiência , Proteínas Reguladoras de Apoptose/imunologia , Morte Celular/genética , Primers do DNA/genética , Diabetes Mellitus Tipo 1/prevenção & controle , Citometria de Fluxo , Immunoblotting , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , MicroRNAs/imunologia , NF-kappa B/imunologia , Proteínas de Ligação a RNA/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Mol Biol Cell ; 22(2): 189-201, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21119010

RESUMO

The formin mDia2 mediates the formation of lamellipodia and filopodia during cell locomotion. The subcellular localization of activated mDia2 depends on interactions with actin filaments and the plasma membrane. We investigated the poorly understood mechanism of plasma membrane targeting of mDia2 and found that the entire N-terminal region of mDia2 preceding the actin-polymerizing formin homology domains 1 and 2 (FH1-FH2) module was potently targeted to the membrane. This localization was enhanced by Rif, but not by other tested small GTPases, and depended on a positively charged N-terminal basic domain (BD). The BD bound acidic phospholipids in vitro, suggesting that in vivo it may associate with the plasma membrane through electrostatic interactions. Unexpectedly, a fragment consisting of the GTPase-binding region and the diaphanous inhibitory domain (G-DID), thought to mediate the interaction with GTPases, was not targeted to the plasma membrane even in the presence of constitutively active Rif. Addition of the BD or dimerization/coiled coil domains to G-DID rescued plasma membrane targeting in cells. Direct binding of Rif to mDia2 N terminus required the presence of both G and DID. These results suggest that the entire N terminus of mDia2 serves as a coincidence detection module, directing mDia2 to the plasma membrane through interactions with phospholipids and activated Rif.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Feminino , Forminas , GTP Fosfo-Hidrolases/farmacologia , Células HeLa , Humanos , Microscopia Confocal , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Transporte Proteico , Relação Estrutura-Atividade , Proteínas rho de Ligação ao GTP/metabolismo
15.
Immunity ; 31(6): 932-40, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-20064450

RESUMO

Regulatory T (Treg) cells are essential for maintaining immune homeostasis. Although Foxp3 expression marks the commitment of progenitors to Treg cell lineage, how Treg cells are generated during lymphocyte development remains enigmatic. We report here that the c-Rel transcription factor controlled development of Treg cells by promoting the formation of a Foxp3-specific enhanceosome. This enhanceosome contained c-Rel, p65, NFAT, Smad, and CREB. Although Smad and CREB first bound to Foxp3 enhancers, they later moved to the promoter to form the c-Rel enhanceosome. c-Rel-deficient mice had up to 90% reductions of Treg cells compared to wild-type mice, and c-Rel-deficient T cells were compromised in Treg cell differentiation. Thus, Treg cell development is controlled by a c-Rel enhanceosome, and strategies targeting Rel-NF-kappaB can be effective for manipulating Treg cell function.


Assuntos
Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Proteínas Proto-Oncogênicas c-rel/genética , Linfócitos T Reguladores/imunologia , Fator de Transcrição RelA/imunologia , Animais , Diferenciação Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-rel/metabolismo , Proteínas Smad/metabolismo , Fator de Transcrição RelA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...