Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(2): e1009262, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33524021

RESUMO

Interrupting transmission is an attractive anti-tuberculosis (TB) strategy but it remains underexplored owing to our poor understanding of the events surrounding transfer of Mycobacterium tuberculosis (Mtb) between hosts. Determining when live, infectious Mtb bacilli are released and by whom has proven especially challenging. Consequently, transmission chains are inferred only retrospectively, when new cases are diagnosed. This process, which relies on molecular analyses of Mtb isolates for epidemiological fingerprinting, is confounded by the prolonged infectious period of TB and the potential for transmission from transient exposures. We developed a Respiratory Aerosol Sampling Chamber (RASC) equipped with high-efficiency filtration and sampling technologies for liquid-capture of all particulate matter (including Mtb) released during respiration and non-induced cough. Combining the mycobacterial cell wall probe, DMN-trehalose, with fluorescence microscopy of RASC-captured bioaerosols, we detected and quantified putative live Mtb bacilli in bioaerosol samples arrayed in nanowell devices. The RASC enabled non-invasive capture and isolation of viable Mtb from bioaerosol within 24 hours of collection. A median 14 live Mtb bacilli (range 0-36) were isolated in single-cell format from 90% of confirmed TB patients following 60 minutes bioaerosol sampling. This represented a significant increase over previous estimates of transmission potential, implying that many more organisms might be released daily than commonly assumed. Moreover, variations in DMN-trehalose incorporation profiles suggested metabolic heterogeneity in aerosolized Mtb. Finally, preliminary analyses indicated the capacity for serial image capture and analysis of nanowell-arrayed bacilli for periods extending into weeks. These observations support the application of this technology to longstanding questions in TB transmission including the propensity for asymptomatic transmission, the impact of TB treatment on Mtb bioaerosol release, and the physiological state of aerosolized bacilli.


Assuntos
Testes Respiratórios , Tosse/microbiologia , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose Pulmonar/microbiologia , Adulto , Estudos de Coortes , Humanos , Microscopia de Fluorescência , Nanotecnologia/instrumentação
2.
PLoS One ; 15(9): e0238193, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32881875

RESUMO

INTRODUCTION: Detection of Mycobacterium tuberculosis (Mtb) in patient-derived bioaerosol is a potential tool to measure source case infectiousness. However, current bioaerosol sampling approaches have reported low detection yields in sputum-positive TB cases. To increase the utility of bioaerosol sampling, we present advances in bioaerosol collection and Mtb identification that improve detection yields. METHODS: A previously described Respiratory Aerosol Sampling Chamber (RASC) protocol, or "RASC-1", was modified to incorporate liquid collection of bioaerosol using a high-flow wet-walled cyclone (RASC-2). Individuals with GeneXpert-positive pulmonary TB were sampled pre-treatment over 60-minutes. Putative Mtb bacilli were detected in collected fluid by fluorescence microscopy utilising DMN-Trehalose. Exhaled air and bioaerosol volumes were estimated using continuous CO2 monitoring and airborne particle counting, respectively. Mtb capture was calculated per exhaled air volume sampled and bioaerosol volume for RASC-1 (n = 35) and for RASC-2 (n = 21). Empty chamber samples were collected between patients as controls. RESULTS: The optimised RASC-2 protocol sampled a median of 258.4L (IQR: 226.9-273.6) of exhaled air per patient compared with 27.5L (IQR: 23.6-30.3) for RASC-1 (p<0.0001). Bioaerosol volume collection was estimated at 2.3nL (IQR: 1.1-3.6) for RASC-2 compared with 0.08nL (IQR: 0.05-0.10) for RASC-1 (p<0.0001). The detection yield of viable Mtb improved from 43% (median 2 CFU, range: 1-14) to 95% (median 20.5 DMN-Trehalose positive bacilli, range: 2-155). These improvements represent a lowering of the limit of detection in the RASC-2 platform to 0.9 Mtb bacilli per 100L of exhaled air from 3.3 Mtb bacilli per 100L (RASC-1). CONCLUSION: This study demonstrates that technical improvements in particle collection together with sensitive detection enable rapid quantitation of viable Mtb in bioaerosols of sputum positive TB cases. Increased sampling sensitivity may allow future TB transmission studies to be extended to sputum-negative and subclinical individuals, and suggests the potential utility of bioaerosol measurement for rapid intervention in other airborne infectious diseases.


Assuntos
Aerossóis/análise , Manejo de Espécimes/métodos , Tuberculose/diagnóstico , Adulto , Dióxido de Carbono/química , Expiração , Feminino , Humanos , Masculino , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose/microbiologia
5.
Anal Chem ; 74(8): 1798-804, 2002 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-11985310

RESUMO

A critical requirement for achieving a micro total analytical system for the analysis of cells and their constituent proteins is to integrate the lysis and fractionation steps on-chip. Here, an experimental microfluidic system integrating the lysis of bacterial cells and the extraction of a large intracellular enzyme, beta-galactosidase, is demonstrated. The beta-galactosidase is detected and quantified using a fluorogenic enzyme assay and a numerical model. While the focus is on the lysis of typical gram-negative bacterial cells (E. coli), the techniques described here could, in principle, be applied to a variety of different cell types.


Assuntos
Proteínas de Bactérias/análise , Escherichia coli/enzimologia , beta-Galactosidase/análise , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA