Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(19): 21127-21135, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38764690

RESUMO

Red blood cell-inspired perfluorocarbon-encapsulated core-shell particles have been developed for biomedical applications. Although the use of perfluorodecalin (FDC) is expected for core-shell particles owing to its high oxygen solubility, the low solubility of FDC in any organic solvent, owing to its fluorous properties, prevents its use in core-shell particles. In this study, a new cosolvent system composed of dichloromethane (DCM) and heptafluoropropyl methyl ether (HFPME) was found to dissolve both FDC and fluorinated polyimide (FPI) based on a systematic study using a phase diagram, achieving a homogeneous disperse phase for emulsification composed of oxygen-permeable FPI and oxygen-soluble FDC. Using this novel cosolvent system and Shirasu porous glass (SPG) membrane emulsification, FDC-encapsulated FPI shell microparticles were successfully prepared for the first time. In addition to oxygenation, demonstrated using hypoxia-responsive HeLa cells, the fabricated core-shell microparticles exhibited monodispersity, excellent stability, biocompatibility, and oxygen capacity.

2.
J Biosci Bioeng ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38644063

RESUMO

Antibody drugs play a vital role in diagnostics and therapy. However, producing antibodies from mammalian cells is challenging owing to cellular heterogeneity, which can be addressed by applying droplet-based microfluidic platforms for high-throughput screening (HTS). Here, we designed an integrated system based on disulfide-bonded redox-responsive hydrogel beads (redox-HBs), which were prepared through enzymatic hydrogelation, to compartmentalize, screen, select, retrieve, and recover selected Chinese hamster ovary (CHO) cells secreting high levels of antibodies. Moreover, redox-HBs were functionalized with protein G as an antibody-binding module to capture antibodies secreted from encapsulated cells. As proof-of-concept, cells co-producing immunoglobulin G (IgG) as the antibody and green fluorescent protein (GFP) as the reporter molecule, denoted as CHO(IgG/GFP), were encapsulated into functionalized redox-HBs. Additionally, antibody-secreting cells were labeled with protein L-conjugated horseradish peroxidase using a tyramide amplification system, enabling fluorescence staining of the antibody captured inside the beads. Redox-HBs were then applied to fluorescence-activated droplet sorting, and selected redox-HBs were degraded by reducing the disulfide bonds to recover the target cells. The results indicated the potential of the developed HTS platform for selecting a single cell viable for biopharmaceutical production.

3.
J Biosci Bioeng ; 137(6): 471-479, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38472071

RESUMO

Chinese hamster ovary (CHO) cells are widely used as a host for producing recombinant therapeutic proteins due to advantages such as human-like post-translational modification, correct protein folding, higher productivity, and a proven track record in biopharmaceutical development. Much effort has been made to improve the process of recombinant protein production, in terms of its yield and productivity, using conventional CHO cell lines. However, to the best of our knowledge, no attempts have been made to acquire new CHO cell lines from Chinese hamster ovary. In this study, we established and characterized a novel CHO cell line, named CHO-MK, derived from freshly isolated Chinese hamster ovary tissues. Some immortalized cell lines were established via sub-culture derived from primary culture, one of which was selected for further development toward a unique expression system design. After adapting serum-free and suspension culture conditions, the resulting cell line exhibited a considerably shorter doubling time (approximately 10 h) than conventional CHO cell lines (approximately 20 h). Model monoclonal antibody (IgG1)-producing cells were generated, and the IgG1 concentration of fed-batch culture reached approximately 5 g/L on day 8 in a 200-L bioreactor. The cell bank of CHO-MK cells was prepared as a new host and assessed for contamination by adventitious agents, with the results indicating that it was free from any such contaminants, including infectious viruses. Taking these findings together, this study showed the potential of CHO-MK cells with a shorter doubling time/process time and enhanced productivity in biologics manufacturing.


Assuntos
Anticorpos Monoclonais , Produtos Biológicos , Reatores Biológicos , Cricetulus , Proteínas Recombinantes , Células CHO , Animais , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Cricetinae , Anticorpos Monoclonais/biossíntese , Produtos Biológicos/metabolismo , Imunoglobulina G/metabolismo , Técnicas de Cultura de Células/métodos , Humanos , Técnicas de Cultura Celular por Lotes/métodos
5.
ACS Synth Biol ; 13(1): 230-241, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38073086

RESUMO

RNA expression analyses can be used to obtain various information from inside cells, such as physical conditions, the chemical environment, and endogenous signals. For detecting RNA, the system regulating intracellular gene expression has the potential for monitoring RNA expression levels in real time within living cells. Synthetic biology provides powerful tools for detecting and analyzing RNA inside cells. Here, we devised an RNA aptamer-mediated gene activation system, RAMGA, to induce RNA-triggered gene expression activation by employing an inducible complex formation strategy grounded in synthetic biology. This methodology connects DNA-binding domains and transactivators through target RNA using RNA-binding domains, including phage coat proteins. MS2 bacteriophage coat protein fused with a transcriptional activator and PP7 bacteriophage coat protein fused with the tetracycline repressor (tetR) can be bridged by target RNA encoding MS2 and PP7 stem-loops, resulting in transcriptional activation. We generated recombinant CHO cells containing an inducible GFP expression module governed by a minimal promoter with a tetR-responsive element. Cells carrying the trigger RNA exhibited robust reporter gene expression, whereas cells lacking it exhibited no expression. GFP expression was upregulated over 200-fold compared with that in cells without a target RNA expression vector. Moreover, this system can detect the expression of mRNA tagged with aptamer tags and modulate reporter gene expression based on the target mRNA level without affecting the expression of the original mRNA-encoding gene. The RNA-triggered gene expression systems developed in this study have potential as a new platform for establishing gene circuits, evaluating endogenous gene expression, and developing novel RNA detectors.


Assuntos
Aptâmeros de Nucleotídeos , Animais , Cricetinae , Ativação Transcricional/genética , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/química , Cricetulus , RNA/genética , Transgenes/genética , Tetraciclina/farmacologia , Antibacterianos , RNA Mensageiro/metabolismo
6.
Biotechnol J ; 19(1): e2300362, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38161242

RESUMO

Biopharmaceuticals, including therapeutic antibodies, are rapidly growing products in the pharmaceutical market. Mammalian cells, such as Chinese hamster ovary (CHO) cells, are widely used as production hosts because recombinant antibodies require complex three-dimensional structures modified with sugar chains. Recombinant protein production using mammalian cells is generally performed with cell growth. In this study, we developed a technology that controls cell growth and recombinant protein production to induce recombinant protein production with predetermined timing. Expression of green fluorescent protein (GFP) gene and a single-chain antibody fused with the Fc-region of the human IgG1 (scFv-Fc) gene can be induced and mediated by the estrogen receptor-based artificial transcription factor Gal4-ERT2-VP16 and corresponding inducer drugs. We generated CHO cells using an artificial gene expression system. The addition of various concentrations of inducer drugs to the culture medium allowed control of proliferation and transgene expression of the engineered CHO cells. Use of 4-hydroxytamoxifen, an antagonist of estrogen, as an inducing agent yielded high gene expression at a concentration more than 10-fold lower than that of ß-estradiol. When scFv-Fc was produced under inducing conditions, continuous production was possible for more than 2 weeks while maintaining high specific productivity (57 pg cell-1 day-1 ). This artificial gene expression control system that utilizes the estrogen response of estrogen receptors can be an effective method for inducible production of biopharmaceuticals.


Assuntos
Produtos Biológicos , Fatores de Transcrição , Cricetinae , Animais , Humanos , Cricetulus , Células CHO , Fatores de Transcrição/genética , Transgenes , Proteínas Recombinantes/genética , Estrogênios
7.
Cells ; 12(22)2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37998372

RESUMO

With the increasing demand for therapeutic antibodies, CHO cells have become the de facto standard as producer host cells for biopharmaceutical production. High production yields are required for antibody production, and developing a high-titer production system is increasingly crucial. This study was established to develop a high-production system using a synthetic biology approach by designing a gene expression system based on an artificial transcription factor that can strongly induce the high expression of target genes in CHO cells. To demonstrate the functionality of this artificial gene expression system and its ability to induce the high expression of target genes in CHO cells, a model antibody (scFv-Fc) was produced using this system. Excellent results were obtained with the plate scale, and when attempting continuous production in semi-continuous cultures using bioreactor tubes with high-cell-density suspension culture using a serum-free medium, high-titer antibody production at the gram-per-liter level was achieved. Shifting the culture temperature to a low temperature of 33 °C achieved scFv-Fc concentrations of up to 5.5 g/L with a specific production rate of 262 pg/(cell∙day). This artificial gene expression system should be a powerful tool for CHO cell engineering aimed at constructing high-yield production systems.


Assuntos
Anticorpos de Cadeia Única , Transativadores , Cricetinae , Animais , Cricetulus , Células CHO , Retroalimentação , Anticorpos de Cadeia Única/genética , Fragmentos Fc das Imunoglobulinas/genética
8.
Gels ; 8(5)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35621610

RESUMO

Researchers have long awaited the technology to develop an in vitro kidney model. Here, we establish a rapid fabricating technique for kidney-like tissues (cysts) using a combination of an organ-derived extracellular matrix (ECM) gel format culture system and a renal stem cell line (CHK-Q cells). CHK-Q cells, which are spontaneously immortalized from the renal stem cells of the Chinese hamster, formed renal cyst-like structures in a type-I collagen gel sandwich culture on day 1 of culture. The cysts fused together and expanded while maintaining three-dimensional structures. The expression of genes related to kidney development and maturation was increased compared with that in a traditional monolayer. Under the kidney-derived ECM (K-ECM) gel format culture system, cyst formation and maturation were induced rapidly. Gene expressions involved in cell polarities, especially for important material transporters (typical markers Slc5a1 and Kcnj1), were restored. K-ECM composition was an important trigger for CHK-Q cells to promote kidney-like tissue formation and maturation. We have established a renal cyst model which rapidly expressed mature kidney features via the combination of K-ECM gel format culture system and CHK-Q cells.

9.
Cells ; 11(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35406758

RESUMO

Functional human hepatocytes have been a pivotal tool in pharmacological studies such as those investigating drug metabolism and hepatotoxicity. However, primary human hepatocytes are difficult to obtain in large quantities and may cause ethical problems, necessitating the development of a new cell source to replace human primary hepatocytes. We previously developed genetically modified murine hepatoma cell lines with inducible enhanced liver functions, in which eight liver-enriched transcription factor (LETF) genes were introduced into hepatoma cells as inducible transgene expression cassettes. Here, we establish a human hepatoma cell line with heat-inducible liver functions using HepG2 cells. The genetically modified hepatoma cells, designated HepG2/8F_HS, actively proliferated under normal culture conditions and, therefore, can be easily prepared in large quantities. When the expression of LETFs was induced by heat treatment at 43 °C for 30 min, cells ceased proliferation and demonstrated enhanced liver functions. Furthermore, three-dimensional spheroid cultures of HepG2/8F_HS cells showed a further increase in liver functions upon heat treatment. Comprehensive transcriptome analysis using DNA microarrays revealed that HepG2/8F_HS cells had enhanced overall expression of many liver function-related genes following heat treatment. HepG2/8F_HS cells could be useful as a new cell source for pharmacological studies and for constructing bioartificial liver systems.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Temperatura Alta , Humanos , Neoplasias Hepáticas/metabolismo , Camundongos
10.
PLoS One ; 17(3): e0266061, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35358245

RESUMO

Immortalized kidney cell lines are widely used in basic and applied research such as cell permeability tests and drug screening. Although many cell lines have been established from kidney tissues, the immortalization process has not been clarified in these cell lines. In this study, we analyzed the phenotypic changes that occurred during the immortalization of kidney cells derived from Chinese hamster tissue in terms of karyotype and gene expression profiles. In the newly established cell line, designated as CHK-Q, gene expression profiles at each stage of the immortalization process and during the adaptation to serum-free conditions were analyzed by DNA microarray. Renal stem cell markers CD24 and CD133 were expressed in CHK-Q cells, suggesting that CHK-Q cells were transformed from renal stem cells. Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis to identify the pathways of upregulated and downregulated genes revealed that the immortalization of CHK-Q cells was associated with increased fluctuations in the expression of specific proto-oncogenes. Karyotype analysis of spontaneously immortalized CHK-Q cells indicated that CHK-Q chromosomes had a typical modal number of 23 but possessed slight chromosomal abnormalities. In this study, we investigated the mechanism of cell environmental adaptation by analyzing gene expression behavior during the immortalization process and serum-free adaptation. CHK-Q cells are applicable to the fields of biotechnology and biomedical science by utilizing their characteristics as kidney-derived cells.


Assuntos
Cromossomos , Células Epiteliais , Animais , Linhagem Celular , Cricetinae , Cricetulus , Células Epiteliais/metabolismo , Rim
11.
J Biosci Bioeng ; 133(3): 273-280, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34930670

RESUMO

Chinese hamster ovary (CHO) cells are widely used for constructing expression systems to produce therapeutic proteins. However, the establishment of high-producer clones remains a laborious and time-consuming process, despite various progresses having been made in cell line development. We previously developed a new strategy for screening high monoclonal antibody (mAb)-producing cells using flow cytometry (FCM). We also reported that p180 and SF3b4 play key roles in active translation on the endoplasmic reticulum, and that the productivity of secreted alkaline phosphatase was enhanced by the overexpression of p180 and SF3b4. Here, we attempted to apply the translational enhancing technology to high mAb-producing cells obtained after high-producer cell sorting. A high mAb-producing CHO clone, L003, which showed an mAb production level of >3 g/L in fed-batch culture, was established from a high mAb-producing cell pool fractionated by FCM. Clones generated by the overexpression of p180 and SF3b4 in L003 cells were evaluated by fed-batch culture. The specific productivity of clones overexpressing these two factors was ∼3.1-fold higher than that of parental L003 cells in the early phase of the culture period. Furthermore, the final mAb concentration was increased to 9.5 g/L during 17 days of fed-batch culture after optimizing the medium and culture process. These results indicate that the overexpression of p180 and SF3b4 would be promising for establishing high-producer cell lines applicable to industrial production.


Assuntos
Anticorpos Monoclonais , Técnicas de Cultura Celular por Lotes , Animais , Células CHO , Cricetinae , Cricetulus , Proteínas Recombinantes , Tecnologia
12.
Cells ; 10(10)2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34685536

RESUMO

Duchenne muscular dystrophy (DMD) is a genetic disorder that results from deficiency of the dystrophin protein. In recent years, DMD pathological models have been created using induced pluripotent stem (iPS) cells derived from DMD patients. In addition, gene therapy using CRISPR-Cas9 technology to repair the dystrophin gene has been proposed as a new treatment method for DMD. However, it is not known whether the contractile function of myotubes derived from gene-repaired iPS cells can be restored. We therefore investigated the maturation of myotubes in electrical pulse stimulation culture and examined the effect of gene repair by observing the contractile behaviour of myotubes. The contraction activity of myotubes derived from dystrophin-gene repaired iPS cells was improved by electrical pulse stimulation culture. The iPS cell method used in this study for evaluating muscle contractile activity is a useful technique for analysing the mechanism of hereditary muscular disease pathogenesis and for evaluating the efficacy of new drugs and gene therapy.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular de Duchenne/fisiopatologia , Apoptose , Diferenciação Celular , Células Cultivadas , Humanos
13.
J Biosci Bioeng ; 132(4): 399-407, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34364783

RESUMO

Constructing three-dimensional (3D) tissues is an important process to improve cellular functions in tissue engineering. When transplanting artificially constructed tissues, a poor vascular network restricts oxygen and nutrient supplies to the tissue cells, which leads to cell death and reduced rates of tissue engraftment. Therefore, it is necessary to develop a system that builds a vascular network within 3D tissues. Here, we developed a hypoxia-responsive gene expression system for production of an angiogenic factor, vascular endothelial growth factor (VEGF), to improve hypoxia and nutrition deficiencies inside artificial 3D tissues. We demonstrated that cells into which the hypoxia-responsive VEGF gene expression system had been introduced autonomously controlled VEGF expression in a hypoxic stress-dependent manner. Next, we confirmed that VEGF expression within a 3D cell sheet was induced in response to a hypoxic environment in vitro. The genetically modified cell sheet was subcutaneously transplanted into mice to evaluate the feasibility of the hypoxia-responsive VEGF gene expression system in vivo. The results suggest that the hypoxia-responsive VEGF gene expression system is promising to prepare artificial 3D tissues in regenerative medicine.


Assuntos
Hipóxia , Fator A de Crescimento do Endotélio Vascular , Animais , Hipóxia Celular , Expressão Gênica , Hipóxia/genética , Camundongos , Fator A de Crescimento do Endotélio Vascular/genética , Fatores de Crescimento do Endotélio Vascular
14.
J Biosci Bioeng ; 132(5): 469-478, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34420898

RESUMO

The use of Chlamydomonas for biofuel and biopharmaceutical production has been anticipated. However, the genetic engineering technology for Chlamydomonas is not as advanced as that for other organisms. Here, we established transgenic Chlamydomonas strains capable of high and stable transgene expression. The established cells exhibited stable reporter gene expression at a high level throughout long-term culture (∼60 days), even in the absence of drug pressure. The transgene insertion sites in the cell genome that may be suitable for exogenous gene expression were identified. Because the transgene contains a loxP site, the cells can be used as founders for retargeting other transgenes using the Cre-loxP system to generate transgenic Chlamydomonas producing useful substances. As a model biopharmaceutical gene, an interferon expression cassette was integrated into the genomic locus of the cells using Cre recombinase. The transgenic cells stably produced interferon protein in medium for 12 passages under non-selective conditions. These results indicate that the Chlamydomonas cells established in this study can serve as valuable and powerful tools not only for basic research on microalgae but also for the rapid establishment of cell lines expressing exogenous genes.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/genética , Genômica , Integrases/genética , Transgenes/genética
15.
Cytotechnology ; 73(3): 353-362, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34149171

RESUMO

Hepatoma cells are a promising cell source for the construction of bioartificial liver (BAL) systems owing to their high proliferative capability. However, their low liver function compared with primary hepatocytes is a major problem. In a previous study, we established a genetically modified hepatoma cell line, Hepa/8F5, in which eight liver-enriched transcription factor (LETF) genes were transduced into mouse hepatoma Hepa1-6 cells using a drug-inducible transactivator system. These cells proliferate actively under normal culture conditions, meaning that large quantities can be prepared easily. When the overexpression of the LETFs is induced by the addition of an inducer drug, cell growth stops and cell morphology changes with concomitant high expression of liver functions. However, the liver functions largely depend on the presence of the inducer drug, which must be continuously added to maintain these enhanced functions. In the present study, we attempted to modify the method of induction of LETF overexpression in Hepa/8F5 cells to remove the requirement for continual drug addition. To this end, we constructed a system in which the artificial transactivator was transcribed and amplified under the control of a heat-shock protein promoter, and introduced the system into the genome of Hepa/8F5 cells. In our modified cell line, heat-triggered LETF expression was confirmed to induce high liver function. After drug-screening of transfected cells, we established a hepatoma cell line (Hepa/HS), which exhibited high, heat-inducible liver functions. The Hepa/HS cells may represent a new cell source for hepatic studies such as the construction of BAL systems. SUPPLEMENTARY INFORMATION: The online version of this article (10.1007/s10616-021-00457-4) contains supplementary material, which is available to authorized users.

16.
Biotechnol J ; 16(7): e2000620, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33938150

RESUMO

Retrotransposons, such as long interspersed element-1 (LINE-1), can copy themselves to other genomic loci via a transposition event (termed retrotransposition). Retrotransposons, therefore, have potential use as an efficient gene delivery tool to integrate multiple copies of a target gene into a host genome. Here, we developed a retrotransposon vector based on LINE-1 that achieves target gene integration of multiple transgene copies. The retrotransposon vector contains a neomycin resistance gene split by an intron as a marker gene, and a gene encoding an antibody single-chain variable fragment (Fv) fused with the constant antibody region (Fc) (scFv-Fc) as a model target gene. G418-resistant Chinese hamster ovary cells were generated using this retrotransposon vector, and scFv-Fc was produced in the culture medium. To regulate retrotransposition, we developed a retrotransposon vector system that separately expressed the two open reading frames (ORF1 and ORF2) of LINE-1. Genomic PCR analysis detected the transgene sequence in almost all tested clones. Compared with clones established using the intact LINE-1 vector, clones generated with the split ORF1 and ORF2 system showed similar specific scFv-Fc productivity and retrotransposition efficiency. This approach of using a retrotransposon-based vector system has the potential to provide a new gene delivery tool for mammalian cells.


Assuntos
Terapia Genética , Elementos Nucleotídeos Longos e Dispersos , Animais , Células CHO , Cricetinae , Cricetulus , Elementos Nucleotídeos Longos e Dispersos/genética , Fases de Leitura Aberta/genética
17.
J Biosci Bioeng ; 131(4): 434-441, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33358352

RESUMO

The contractile function of skeletal muscle is essential for maintaining the vital activity of life. Muscular diseases such as muscular dystrophy severely compromise the quality of life of patients and ultimately lead to death. There is therefore an urgent need to develop therapeutic agents for these diseases. In a previous study, we showed that three-dimensional skeletal muscle tissues fabricated using the magnetic force-based tissue engineering technique exhibited contractile activity, and that drug effects could be evaluated based on the contractile activity of the skeletal muscle tissues. However, the reported method requires a large number of cells and the tissue preparation procedure is complex. It is therefore necessary to improve the tissue preparation method. In this study, a miniature device made of polydimethylsiloxane was used to simplify the production of contracting skeletal muscle tissues applicable to high-throughput screening. The effects of model drugs on the contractile force generation of skeletal muscle tissues prepared from mouse C2C12 myoblast and human induced pluripotent stem cells were evaluated using the miniature muscle device. The results indicated that the muscle device system could provide a useful tool for drug screening.


Assuntos
Contração Muscular , Músculo Esquelético/citologia , Animais , Diferenciação Celular , Linhagem Celular , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Mioblastos/citologia , Engenharia Tecidual/métodos
18.
J Biosci Bioeng ; 131(3): 314-319, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33223431

RESUMO

Developing chick embryos are a classical research tool in developmental biology. The whole embryo culture technique can be applied to various fields, such as embryo manipulation, toxicology, tumorigenesis, and basic research in regenerative medicine. When used for the generation of transgenic chickens, a high hatchability of genetically engineered embryos is essential to support normal embryonic development during culture. In this study, calcium carbonate, which is the main component of eggshells, was added as a calcium source in shell-less chick embryo cultures using a transparent plastic film as a culture vessel. In the absence of a calcium source in the shell-less culture system, embryogenesis ceased during culture, resulting in failed embryonic hatching. We found that the direct addition of calcium carbonate to the chorioallantoic membrane of the developing embryo was effective for the hatching of cultured chick embryos. The amount, timing, and location of calcium carbonate addition were investigated to maximize the hatchability of cultured embryos. Starting from the time of calcium carbonate supplementation, >40% hatchability was obtained with the optimal condition. This established method of shell-less chick embryo culture provides a useful tool in basic and applied fields of chick embryo manipulation.


Assuntos
Carbonato de Cálcio/farmacologia , Membrana Corioalantoide/efeitos dos fármacos , Animais , Embrião de Galinha , Membrana Corioalantoide/metabolismo , Técnicas de Cultura , Suplementos Nutricionais
19.
Cytotechnology ; 72(2): 227-237, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32016712

RESUMO

The bioartificial liver (BAL) device is an extracorporeal liver support system incorporating living hepatocytes. A major problem in BAL device development is to obtain a high number of functional cells. In this study, we focused on a genetically engineered mouse hepatoma cell line, Hepa/8F5, in which elevated liver functions are induced via overexpression of liver-enriched transcription factors activated by doxycycline (Dox) addition. We applied a three-dimensional culture technique using hollow fibers (HFs) to Hepa/8F5 cells. Hepa/8F5 cells responded to Dox addition by reducing their proliferative activity and performing liver-specific functions of ammonia removal and albumin secretion. The functional activities of cells depended on the timing of Dox addition. We also found that Hepa/8F5 cells in the HF culture were highly functional in a low rather than high cell density environment. We further fabricated an HF-type bioreactor with immobilized Hepa/8F5 cells as a BAL device. Although ammonia removal activity of this BAL device was lower than that of the small-scale HF bundle, albumin secretion activity was slightly higher. These results indicated that the BAL device with immobilized Hepa/8F5 cells was highly functional with potential to show curative effects in liver failure treatment.

20.
J Biosci Bioeng ; 129(3): 363-370, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31594694

RESUMO

It is anticipated that transgenic avian species will be used as living bioreactors for the production of biopharmaceutical proteins. Precise tissue-specific expression of exogenous genes is a major challenge for the development of avian bioreactors. No robust vector is currently available for highly efficient and specific expression. In recent years, genome-editing techniques such as the CRISPR/Cas9 system have emerged as efficient and user-friendly genetic modification tools. Here, to apply the CRISPR/Cas9 system for the development of transgenic chickens, guide RNA sequences (gRNAs) of the CRISPR/Cas9 system for the ovalbumin (OVA) locus were evaluated for the oviduct-specific expression of exogenous genes. An EGFP gene expression cassette was introduced into the OVA locus of chicken DF-1 and embryonic fibroblasts using the CRISPR/Cas9 system mediated by homology-independent targeted integration. For the knock-in cells, EGFP expression was successfully induced by activation of the endogenous OVA promoter using the dCas9-VPR transactivation system. The combination of gRNAs designed around the OVA TATA box was important to induce endogenous OVA gene expression with high efficiency. These methods provide a useful tool for studies on the creation of transgenic chicken bioreactors and the activation of tissue-specific promoters.


Assuntos
Sistemas CRISPR-Cas , Ovalbumina/genética , Animais , Linhagem Celular , Galinhas/genética , Edição de Genes , Expressão Gênica , Loci Gênicos , Ovalbumina/metabolismo , RNA Guia de Cinetoplastídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...