Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 88(19): 9766-9772, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27596382

RESUMO

Atmospheric aerosol nanoparticles play a major role in many atmospheric processes and in particular in the global climate system. Understanding their formation by homogeneous or heterogeneous nucleation as well as their photochemical aging and atmospheric transformation is of utmost importance to evaluate their impact on atmospheric phenomena. Single particle analysis like tip-enhanced Raman spectroscopy (TERS) opens access to a deeper understanding of these nanoparticles. Atmospherically relevant nanoparticles, formed above a simulated salt lake inside an aerosol smog-chamber, were analyzed using TERS. TERS spectra of 11 nanoparticles were studied in detail. First results of TERS on atmospherically relevant aerosol nanoparticles reveal the presence of inorganic seed particles, a chemical diversity of equally sized particles in the nucleation mode, and chemical transformation during photochemical aging. Therefore, single particle analysis by optical near-field spectroscopy such as TERS of atmospheric nanoparticles will significantly contribute to elucidate atmospheric nucleation, photochemical aging, and chemical transformation processes by uncovering single particle based properties.

2.
Anal Chem ; 87(18): 9413-20, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26278430

RESUMO

The chemometric analysis of multisensor hyperspectral data allows a comprehensive image-based analysis of precipitated atmospheric particles. Atmospheric particulate matter was precipitated on aluminum foils and analyzed by Raman microspectroscopy and subsequently by electron microscopy and energy dispersive X-ray spectroscopy. All obtained images were of the same spot of an area of 100 × 100 µm(2). The two hyperspectral data sets and the high-resolution scanning electron microscope images were fused into a combined multisensor hyperspectral data set. This multisensor data cube was analyzed using principal component analysis, hierarchical cluster analysis, k-means clustering, and vertex component analysis. The detailed chemometric analysis of the multisensor data allowed an extensive chemical interpretation of the precipitated particles, and their structure and composition led to a comprehensive understanding of atmospheric particulate matter.


Assuntos
Atmosfera/química , Precipitação Química , Informática/métodos , Material Particulado/análise , Material Particulado/química , Alumínio/química , Análise por Conglomerados , Fenômenos Eletromagnéticos , Análise de Componente Principal , Análise Espectral Raman
3.
Faraday Discuss ; 165: 135-49, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24601001

RESUMO

The concurrent presence of high values of organic SOA precursors and reactive halogen species (RHS) at very low ozone concentrations allows the formation of halogen-induced organic aerosol, so-called XOA, in maritime areas where high concentrations of RHS are present, especially at sunrise. The present study combines aerosol smog-chamber and aerosol flow-reactor experiments for the characterization of XOA. XOA formation yields from alpha-pinene at low and high concentrations of chlorine as reactive halogen species (RHS) were determined using a 700 L aerosol smog-chamber with a solar simulator. The chemical transformation of the organic precursor during the aerosol formation process and chemical aging was studied using an aerosol flow-reactor coupled to an FTIR spectrometer. The FTIR dataset was analysed using 2D correlation spectroscopy. Chlorine induced homogeneous XOA formation takes place at even 2.5 ppb of molecular chlorine, which was photolysed by the solar simulator. The chemical pathway of XOA formation is characterized by the addition of chlorine and abstraction of hydrogen atoms, causing simultaneous carbon-chlorine bond formation. During further steps of the formation process, carboxylic acids are formed, which cause a SOA-like appearance of XOA. During the ozone-free formation of secondary organic aerosol with RHS a special kind of particulate matter (XOA) is formed, which is afterwards transformed to SOA by atmospheric aging or degradation pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...