Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Br J Radiol ; 97(1153): 142-149, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263831

RESUMO

OBJECTIVE: This study evaluated the prognostic impact of the quality of dose distribution using dosiomics in patients with prostate cancer, stratified by pretreatment prostate-specific antigen (PSA) levels and Gleason grade (GG) group. METHODS: A total of 721 patients (Japanese Foundation for Cancer Research [JFCR] cohort: N = 489 and Tokyo Radiation Oncology Clinic [TROC] cohort: N = 232) with localized prostate cancer treated by intensity-modulated radiation therapy were enrolled. Two predictive dosiomic features for biochemical recurrence (BCR) were selected and patients were divided into certain groups stratified by pretreatment PSA levels and GG. Freedom from biochemical failure (FFBF) was estimated using the Kaplan-Meier method based on each dosiomic feature and univariate discrimination was evaluated using the log-rank test. As an exploratory analysis, a dosiomics hazard (DH) score was developed and its prognostic power for BCR was examined. RESULTS: The dosiomic feature extracted from planning target volume (PTV) significantly distinguished the high- and low-risk groups in patients with PSA levels >10 ng/mL (7-year FFBF: 86.7% vs 76.1%, P < .01), GG 4 (92.2% vs 76.9%, P < .01), and GG 5 (83.1% vs 77.8%, P = .04). The DH score showed significant association with BCR (hazard score: 2.04; 95% confidence interval: 1.38-3.01; P < .001). CONCLUSION: The quality of planned dose distribution on PTV may affect the prognosis of patients with poor prognostic factors, such as PSA levels >10 ng/mL and higher GGs. ADVANCES IN KNOWLEDGE: The effects of planned dose distribution on prognosis differ depending on the patient's clinical background.


Assuntos
Neoplasias da Próstata , Radioterapia de Intensidade Modulada , Masculino , Humanos , Antígeno Prostático Específico , Estudos Retrospectivos , Análise de Sobrevida
2.
Phys Eng Sci Med ; 46(3): 1091-1100, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37247102

RESUMO

PURPOSE: To evaluate whether knowledge-based volumetric modulated arc therapy plans for prostate cancer with a multi-institution model (broad model) are clinically useful and effective as a standardization method. METHODS: A knowledge-based planning (KBP) model was trained with 561 prostate VMAT plans from five institutions with different contouring and planning policies. Five clinical plans at each institution were reoptimized with the broad and single institution model, and the dosimetric parameters and relationship between Dmean and the overlapping volume (rectum or bladder and target) were compared. RESULTS: The differences between the broad and single institution models in the dosimetric parameters for V50, V80, V90, and Dmean were: rectum; 9.5% ± 10.3%, 3.3% ± 1.5%, 1.7% ± 1.6%, and 3.6% ± 3.6%, (p < 0.001), bladder; 8.7% ± 12.8%, 1.5% ± 2.6%, 0.7% ± 2.4%, and 2.7% ± 4.6% (p < 0.02), respectively. The differences between the broad model and clinical plans were: rectum; 2.4% ± 4.6%, 1.7% ± 1.7%, 0.7% ± 2.4%, and 1.5% ± 2.0%, (p = 0.004, 0.015, 0.112, and 0.009) bladder; 2.9% ± 5.8%, 1.6% ± 1.9%, 0.9% ± 1.7%, and 1.1% ± 4.8%, (p < 0.018), respectively. Positive values indicate that the broad model has a lower value. Strong correlations were observed (p < 0.001) in the relationship between Dmean and the rectal and bladder volume overlapping with the target in the broad model (R = 0.815 and 0.891, respectively). The broad model had the smallest R2 of the three plans. CONCLUSIONS: KBP with the broad model is clinically effective and applicable as a standardization method at multiple institutions.


Assuntos
Neoplasias da Próstata , Radioterapia de Intensidade Modulada , Masculino , Humanos , Próstata , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Padrões de Referência
3.
Radiother Oncol ; 182: 109573, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36822360

RESUMO

BACKGROUND AND PURPOSE: This study was performed to evaluate the four-dimensional motion of lung tumors during end-exhalation (EE) breath-holding (BH) using cine computed tomography (CT) and investigate the correlation between tumor and surrogate marker motions. MATERIALS AND METHODS: This study included 28 patients who underwent stereotactic body radiation therapy at our institution and were capable of 15-20 s of EE BH within a ±1.5-mm gating window with external markers. During EE BH with cine CT, 21 s of continuous data were acquired using 320-row multislice CT. Displacements in the tumor position during EE BH were assessed in the left-right (LR), anterior-posterior (AP), and superior-inferior (SI) directions. Pearson's correlation coefficient (r) between tumor motions during EE BH and diaphragm/external marker motions was also determined. RESULTS: The mean absolute maximum displacements of the tumor position during EE BH were 1.3 (range: 0.2-4.0), 1.9 (range: 0.3-12.0), and 1.3 (range: 0.1-7.2) mm in the LR, AP, and SI directions, respectively. The displacement of the tumor position in the AP direction was weakly correlated (|r| < 0.4) with the external marker and diaphragm displacements in many cases (proportions of 50% and 46%, respectively). CONCLUSION: We found some cases showing substantial displacement in lung tumor positions during EE BH, especially in the AP direction. Because these tumor position displacements did not correlate with surrogate markers and were difficult to detect, we recommend pretreatment evaluation of the four-dimensional motions of tumors during BH using cine CT.


Assuntos
Expiração , Neoplasias Pulmonares , Humanos , Suspensão da Respiração , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patologia , Movimento (Física) , Tomografia Computadorizada de Feixe Cônico/métodos , Tomografia Computadorizada Quadridimensional/métodos , Respiração
4.
J Appl Clin Med Phys ; 24(2): e13836, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36333969

RESUMO

OBJECTIVE: Dosimetric potential of knowledge-based RapidPlan planning model trained with HyperArc plans (Model-HA) for brain metastases has not been reported. We developed a Model-HA and compared its performance with that of clinical volumetric modulated arc therapy (VMAT) plans. METHODS: From 67 clinical stereotactic radiosurgery (SRS) HyperArc plans for brain metastases, 47 plans were used to build and train a Model-HA. The other 20 clinical HyperArc plans were recalculated in RapidPlan system with Model-HA. The model performance was validated with the 20 plans by comparing dosimetric parameters for normal brain tissue between clinical plans and model-generated plans. The 20 clinical conventional VMAT-based SRS or stereotactic radiotherapy plans (CL-VMAT) were reoptimized with Model-HA (RP) and HyperArc system (HA), respectively. The dosimetric parameters were compared among three plans (CL-VMAT vs. RP vs. HA) in terms of planning target volume (PTV), normal brain excluding PTVs (Brain - PTV), brainstem, chiasm, and both optic nerves. RESULTS: In model validation, the optimization performance of Model-HA was comparable to that of HyperArc system. In comparison to CL-VMAT, there were no significant differences among three plans with respect to PTV coverage (p > 0.17) and maximum dose for brainstem, chiasm, and optic nerves (p > 0.40). RP provided significantly lower V20 Gy , V12 Gy , and V4 Gy for Brain - PTV than CL-VMAT (p < 0.01). CONCLUSION: The Model-HA has the potential to significantly reduce the normal brain dose of the original VMAT plans for brain metastases.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/secundário , Encéfalo , Radiocirurgia/métodos , Radioterapia de Intensidade Modulada/métodos
5.
Anticancer Res ; 42(11): 5305-5314, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36288870

RESUMO

BACKGROUND/AIM: This study evaluated the impact of knowledge-based plan (KBP) model improvement on plan complexity and delivery accuracy in volumetric modulated arc therapy (VMAT) for prostate cancer at multiple institutions. MATERIALS AND METHODS: Five institutions created the first KBP model before April 2017 and subsequently devised a new model (second model) based on feedback from the first KBP and the efforts of planners after April 2019. The dose-volume histogram (DVH) parameters were validated for two prostate cancer cases between the first and second KBPs. Plan complexity metrics, of the modulation complexity score for VMAT (MCSv), closed leaf score (CLS), small aperture score (SAS), and leaf travel (LT), were compared. The delivery accuracy metrics of γ pass rate and point dose discrepancy (plan vs. measurement) at isocenter were also compared. RESULTS: There were no significant differences in DVH parameters between the KBPs. Conversely, V50% of the rectum and bladder was reduced in 6/10 and 8/10 patients, respectively, and these variations were also converged from the first KBP to the second KBP. The mean±1SDs of MCSv, CLS, SAS20mm, and LT (first KBP vs. second KBP) were 0.27±0.033 vs. 0.26±0.044, 0.062±0.032 vs. 0.14±0.091, 0.59±0.048 vs. 0.70±0.14, and 411.91±32.08 mm vs. 548.33±127.50 mm, respectively. The delivery accuracy did not differ, whereas MCSv was moderately correlated with the point dose discrepancy. CONCLUSION: Multi-leaf collimator motion could be more complex with KBP model improvement, which had the potential to deteriorate the delivery accuracy.


Assuntos
Neoplasias da Próstata , Radioterapia de Intensidade Modulada , Masculino , Humanos , Planejamento da Radioterapia Assistida por Computador , Dosagem Radioterapêutica , Neoplasias da Próstata/radioterapia , Raios gama
6.
Sci Rep ; 12(1): 15282, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088382

RESUMO

We established a multi-institution model (big model) of knowledge-based treatment planning with over 500 treatment plans from five institutions in volumetric modulated arc therapy (VMAT) for prostate cancer. This study aimed to clarify the efficacy of using a large number of registered treatment plans for sharing the big model. The big model was created with 561 clinically approved VMAT plans for prostate cancer from five institutions (A: 150, B: 153, C: 49, D: 60, and E: 149) with different planning strategies. The dosimetric parameters of planning target volume (PTV), rectum, and bladder for two validation VMAT plans generated with the big model were compared with those from each institutional model (single-institution model). The goodness-of-fit of regression lines (R2 and χ2 values) and ratios of the outliers of Cook's distance (CD) > 4.0, modified Z-score (mZ) > 3.5, studentized residual (SR) > 3.0, and areal difference of estimate (dA) > 3.0 for regression scatter plots in the big model and single-institution model were also evaluated. The mean ± standard deviation (SD) of dosimetric parameters were as follows (big model vs. single-institution model): 79.0 ± 1.6 vs. 78.7 ± 0.5 (D50) and 0.13 ± 0.06 vs. 0.13 ± 0.07 (Homogeneity Index) for the PTV; 6.6 ± 4.0 vs. 8.4 ± 3.6 (V90) and 32.4 ± 3.8 vs. 46.6 ± 15.4 (V50) for the rectum; and 13.8 ± 1.8 vs. 13.3 ± 4.3 (V90) and 39.9 ± 2.0 vs. 38.4 ± 5.2 (V50) for the bladder. The R2 values in the big model were 0.251 and 0.755 for rectum and bladder, respectively, which were comparable to those from each institution model. The respective χ2 values in the big model were 1.009 and 1.002, which were closer to 1.0 than those from each institution model. The ratios of the outliers in the big model were also comparable to those from each institution model. The big model could generate a comparable VMAT plan quality compared with each single-institution model and therefore could possibly be shared with other institutions.


Assuntos
Neoplasias da Próstata , Radioterapia de Intensidade Modulada , Humanos , Masculino , Neoplasias da Próstata/radioterapia , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
7.
Phys Med ; 95: 126-132, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35158316

RESUMO

PURPOSE: We aimed to compare dosimetric parameters between three-dimensional conformal radiation therapy followed by electron beam boost (3D-CRT + EB) and volumetric modulated arc therapy using simultaneous integrated boost (SIB-VMAT) in left-sided breast cancer patients. METHODS: This study included 57 patients with left-sided breast cancer who underwent SIB-VMAT. All patients had a computed tomography-based maximum heart distance of ≥ 1 cm and were prescribed a dose of 42.56 Gy/16 fractions to the planning target volume and a concomitant-boosted target dose of 53.2 Gy or 51.2 Gy. The 3D-CRT + EB plan was retrospectively created for the purpose of comparison using tangential fields with field-in-field technique followed by electron beam irradiation. RESULTS: The doses to the clinical target volume significantly improved in the SIB-VMAT plans. All dosimetric parameters for the left anterior descending coronary artery (LAD) and LAD middle position (LAD mid) in the SIB-VMAT plans were significantly lower than those for 3D-CRT + EB plans (P < 0.01), while the doses to the heart, lung, contralateral breast and non-target tissue were decreased in the 3D-CRT + EB plans compared with those in the SIB-VMAT plans (e.g., 1.9 Gy vs. 2.9 Gy; P < 0.001 for the mean dose of heart). CONCLUSIONS: SIB-VMAT significantly improved the dose to the target while reducing the doses to the LAD and LAD mid, whereas 3D-CRT + EB significantly decreased the doses to the heart and other organs at risk in patients with left-sided breast cancer at risk for radiation-induced coronary artery disease.


Assuntos
Neoplasias da Mama , Radioterapia Conformacional , Radioterapia de Intensidade Modulada , Neoplasias Unilaterais da Mama , Neoplasias da Mama/etiologia , Neoplasias da Mama/radioterapia , Cardiotoxicidade/etiologia , Elétrons , Feminino , Humanos , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/efeitos adversos , Radioterapia Conformacional/métodos , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos , Neoplasias Unilaterais da Mama/radioterapia
8.
Int J Radiat Oncol Biol Phys ; 112(1): 247-259, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34706278

RESUMO

PURPOSE: Although radiation therapy is one of the most significant treatment modalities for localized prostate cancer, the prognostic factors for biochemical recurrence (BCR) regarding the treatment plan are unclear. We aimed to develop a novel dosiomics-based prediction model for BCR in patients with prostate cancer and clarify the correlations between the dosimetric factors and BCR. METHODS AND MATERIALS: This study included 489 patients with localized prostate cancer (BCR: 96; no-BCR: 393) who received intensity modulated radiation therapy. A total of 2475 dosiomic features were extracted from the dose distributions on the prostate, clinical target volume (CTV), and planning target volume. A prediction model for BCR was trained on a training cohort of 342 patients. The performance of this model was validated using the concordance index (C-index) in a validation cohort of 147 patients. Another model was constructed using clinical variables, dosimetric parameters, and radiomic features for comparisons. Kaplan-Meier curves with log-rank analysis were used to assess the univariate discrimination based on the predictive dosiomic features. RESULTS: The dosiomic feature derived from the CTV was significantly associated with BCR (hazard ratio, 0.73; 95% CI, 0.57-0.93; P = .01). Although the dosiomics model outperformed the dosimetric and radiomics models, it did not outperform the clinical model. The performance significantly improved by combining the clinical variables and dosiomic features (C-index: 0.67; 95% CI, 0.65-0.68; P < .0001). The predictive dosiomic features were used to distinguish high-risk and low-risk patients (P < .05). CONCLUSIONS: The dosiomic feature extracted from the CTV was significantly correlated with BCR in patients with prostate cancer, and the dosiomics model outperformed the model with conventional dose indices. Hence, new metrics for evaluating the quality of a treatment plan are warranted. Moreover, further research should be conducted to determine whether dosiomics can be incorporated in a clinical workflow or clinical trial.


Assuntos
Neoplasias da Próstata , Radioterapia de Intensidade Modulada , Humanos , Masculino , Próstata , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Radiometria , Radioterapia de Intensidade Modulada/métodos
9.
Rep Pract Oncol Radiother ; 26(6): 849-860, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992856

RESUMO

BACKGROUND: The aim of this study was to investigate the performance of the RapidPlan (RP ) using models registered pseudostructures, and to determine how many structures are required for automatic optimization of volumetric modulated arc therapy (VMAT) for postoperative uterine cervical cancer. MATERIALS AND METHODS: Pseudo-structures around the PTV were retrospectively contoured for patients who had completed treatment at five institutions. For 22 common patients, plans were generated with a single optimization for models with two (RP_2), four (RP_4), and five (RP_5) registered structures, and the dosimetric parameters of these models were compared with a clinical plan with several optimizations. RESULTS: Most dosimetric parameters showed no major differences between each RP model. In particular, the rectum Dmax, V50Gy, and V40Gy with RP_2, RP_4, and RP_5 were not significantly different, and were lower than those of the clinical plan. The average proportions of plans achieving acceptable criteria for dosimetric parameters were close to 100% for all models. Using RP_2, the average time for the VMAT planning was reduced by 88 minutes compared with the clinical plan. CONCLUSION: The RapidPlan model with two registered pseudo-structures could generate clinically acceptable plans while saving time.

10.
Radiol Phys Technol ; 13(4): 327-335, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32986184

RESUMO

Dosimetric evaluation and variation assessment were performed with two knowledge-based planning (KBP) models created at different periods for volumetric-modulated arc therapy (VMAT) for prostate cancer at five institutes. The first and second models (F- and S-models) for KBP were created before April 2017 and April 2019, respectively. The S-model was created using feedback plans from the F-model. Dose evaluation was compared between the two models using the same two computed tomography (CT) datasets and structures. The evaluation metrics were the dose received by 95.0% and 2.0% of the planning target volume (PTV); dose-volume parameters to the rectum and bladder as V90, V80, and V50; and monitor unit (MU). Dosimetric variation was compared by exporting estimated dose-volume histograms for each model to the Model Analytics website and assessing the organ at risk volume. There were no dosimetric differences between the two models for PTV. The V50 of the rectum in the S-model had improved compared to that of the F-model (case I: 49.3 ± 15.6 and 43.5 ± 15.2 [p = 0.08]; case II: 42.5 ± 16.9 and 36.0 ± 15.6 [p = 0.138]). The differences in other parameters were within ± 1.8% between the rectum and the bladder. The MU was slightly higher in the S-model than in the F-model, and dosimetric variation was reduced to the rectum and bladder among all the institutes. The polished S-model for KBP could be used for standardization of the plan quality and sharing of KBP models in VMAT for prostate cancer.


Assuntos
Neoplasias da Próstata , Radioterapia de Intensidade Modulada , Humanos , Masculino , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
11.
J Med Phys ; 45(2): 71-77, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32831489

RESUMO

PURPOSE: This study aimed to investigate the influence of cleaned-up knowledge-based treatment planning (KBP) models on the plan quality for volumetric-modulated arc therapy (VMAT) of prostate cancer. MATERIALS AND METHODS: Thirty prostate cancer VMAT plans were enrolled and evaluated according to four KBP modeling methods as follows: (1) model not cleaned - trained by fifty other clinical plans (KBPORIG); (2) cases cleaned by removing plans that did not meet all clinical goals of the dosimetric parameters, derived from dose-volume histogram (DVH) (KBPC-DVH); (3) cases cleaned outside the range of ±1 standard deviation through the principal component analysis regression plots (KBPC-REG); and (4) cases cleaned using both methods (2) and (3) (KBPC-ALL). Rectal and bladder structures in the training models numbered 34 and 48 for KBPC-DVH, 37 and 33 for KBPC-REG, and 26 and 33 for KBPC-ALL, respectively. The dosimetric parameters for each model with one-time auto-optimization were compared. RESULTS: All KBP models improved target dose coverage and conformity and provided comparable sparing of organs at risks (rectal and bladder walls). There were no significant differences in plan quality among the KBP models. Nevertheless, only the KBPC-ALL model generated no cases of >1% V78 Gy (prescribed dose) to the rectal wall, whereas the KBPORIG, KBPC-DVH, and KBPC-REG models included two, four, and three cases, respectively, which were difficult to overcome with KBP because the planning target volume (PTV) and rectum regions overlapped. CONCLUSIONS: The cleaned-up KBP model based on DVH and regression plots improved plan quality in the PTV-rectum overlap region.

12.
Artigo em Japonês | MEDLINE | ID: mdl-32307363

RESUMO

PURPOSE: The aperture shape controller (ASC) decreases the complexity of the multi-leaf collimator (MLC) aperture for volumetric modulated arc therapy (VMAT). The purpose of this study was to evaluate the effect of ASC settings on the VMAT plan quality. METHOD: First, VMAT plans were created (ASC=off) for three test patterns of The American Association of Physicists in Medicine (AAPM) Task Group 119 (TG-119) and 20 cases of nasopharyngeal cancer. Next, for these VMAT plans, only the ASC settings were changed from very low (complexity reduction: low) to very high (complexity reduction: high) in five steps, and VMAT plans were created respectively. To evaluate the created VMAT plans per each ASC settings, we analyzed the modulation complexity score (MCSV) and dosimetric parameters for the planning target volume (PTV) and organ at risk (OAR). RESULT: In three test patterns, there were no major dosimetric differences between the VMAT plans. In nasopharyngeal cancer, the mean MCSV were 0.413, 0.325, 0.320, 0.307, 0.303, and 0.272 for very high, high, moderate, low, very low, off settings, respectively. Therefore, the most complex MLC aperture was off, followed by very low, low, moderate, high, and very high. In terms of dosimetric parameters, the VMAT plans created using the very high setting showed an increase of D2% in the PTV and worse OAR sparing than that using other ASC settings. On the other hand, the dosimetric results for the very low to moderate setting obtained similar results to those for the off setting, respectively. CONCLUSION: The ASC was able to decrease the complexity of the MLC aperture according to the setting level. From very low to moderate settings, a plan equivalent to the off setting could be created in terms of dose parameters.


Assuntos
Neoplasias Nasofaríngeas/radioterapia , Radioterapia de Intensidade Modulada , Humanos , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
13.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 75(12): 1394-1402, 2019.
Artigo em Japonês | MEDLINE | ID: mdl-31866637

RESUMO

In image guided radiation therapy (IGRT) using implanted fiducial marker by two-dimensional radiography for prostate cancer, temporal positional relationship during treatment between the isocenter and the prostate is changed by respiratory phase at the time of image acquisition. We examined influence of the respiratory phase in the IGRT on dose variation by interplay effect. Intra-fractional prostate motions of patients who were implanted fiducial marker were measured using fluoroscopy, then we reconstructed plans considering for the respiratory phase in IGRT and the respiratory motion during volumetric modulated arc therapy. Averages of the intra-fractional prostate motion in left-right, anterior-posterior and superior-inferior direction were 0.039, 0.49 and 1.6 mm respectively. There was a patient whose intra-fractional prostate motion was larger than 4 mm that was planning target volume margin. By changing the respiratory phase like inspiration, exhalation and dispersing respiratory phase in each fraction, dose variation from original plan became smaller in order of the inspiration, exhalation and dispersion. The largest variations of dose indices in clinical target volume, bladder and rectum were 8.0%, 4.5% and 9.1% respectively when IGRT was done in inspiration. When the IGRT is performed by the same respiratory phase in each fraction, systematic dose variations may occur even if the respiratory phase at the timing of irradiation is changed. By dispersing the respiratory phase in each fraction, the variations in all dose indices were<1% from original plan. We realized that dispersing the respiratory phase in IGRT by each fraction is effective to reduce the dose variation caused by the respiratory phase in IGRT.


Assuntos
Neoplasias da Próstata , Radioterapia Guiada por Imagem , Radioterapia de Intensidade Modulada , Humanos , Masculino , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
14.
Phys Med ; 64: 174-181, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31515017

RESUMO

PURPOSE: The aim of this study was to investigate whether additional manual objectives are necessary for the RapidPlan (RP) with a single optimization. We conducted multi-institutional comparisons of plan quality for head and neck cancer (HNC) using the models created at each institute. METHODS: The ability of RP to produce acceptable plans for dose requirements was evaluated in two types of oropharynx cancers at five institutes in Japan. Volumetric modulated arc therapy plans created without (RP plan) and with additional manual objectives (M-RP plan) were compared in terms of planning target volume (PTV), brainstem, spinal cord and parotid glands in dosimetric parameters. RESULTS: There were no major dosimetric PTV differences between RP and M-RP plans. For the brainstem and spinal cord in the RP plans, only 40% and 30% of the plans achieved the dose requirements, while the M-RP plans with upper objective added to volume 0% at all institutes achieved them for 90% of the plans. For the L-parotid gland, there was no difference in the RP and M-RP plans (both were 40%) in achieving the acceptable criteria. For the R-parotid gland, 60% and 80% of the RP and M-RP plans achieved the constraint criteria, and in terms of the achievement rate, the RP plans were relatively high. CONCLUSIONS: M-RP plans did not require reoptimization; only an upper objective was needed for the brainstem and spinal cord, while the parotid gland dose was reduced in both RP plans with the auto generated line objectives alone.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada , Humanos , Órgãos em Risco/efeitos da radiação , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/efeitos adversos
15.
Phys Med ; 61: 70-76, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31151582

RESUMO

PURPOSE: (i) to investigate the capability of organ-at-risk (OAR) dose reduction with the jaw tracking (JT) technique in flattening filter-free (FFF) beams in lung stereotactic body radiation therapy (SBRT), (ii) to propose a novel metric to quantify the jaw movements during JT, and (iii) to examine the relationships between the quantified jaw movements and reduction rate of OAR doses. METHODS: The individual SBRT plans with volumetric modulated arc therapy using the JT technique (JT-VMAT) and VMAT plans with a fixed jaw (FJ-VMAT) were created for 15 patients, and dosimetric parameters were compared. A jaw tracking complexity score (JTCS) was defined and compared with the multi-leaf collimator (MLC) modulation complexity score (MCS). The correlations between the JTCS and reduction rate of OAR doses were examined. RESULTS: The decrease of OARs doses was statistically significant in the JT-VMAT plans (1.2% in V20 of the lung and <1% in all other OARs). The correlations between the JTCS and MCS were not significant. There were significant correlations between the JTCS and the reduction rates in V20, V2.5, and Dmean of the lung, D1% of the spinal cord, and D90% of the body. CONCLUSIONS: A significant decrease of dosimetric parameters of OARs was found with JT-VMAT in FFF beams. This reduction is very small and probably not clinically relevant. JTCS, a novel metric to quantify the jaw movements during JT, was proposed, and the complexity of jaw movements did not correlate with that of the movements of MLC leaves. There were significant correlations between the JTCS and some dosimetric parameters of OARs.


Assuntos
Neoplasias Pulmonares/radioterapia , Órgãos em Risco/efeitos da radiação , Doses de Radiação , Radiocirurgia/efeitos adversos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
16.
Artigo em Japonês | MEDLINE | ID: mdl-30787221

RESUMO

RapidPlan, a knowledge-based planning software, uses a model library containing the dose-volume histogram (DVH) of previous treatment plans, and it automatically provides optimization objectives based on a trained model to future patients for volumetric modulated arc therapy treatment planning. However, it is unknown how DVH outliers registered in models influence the resulting plans. The purpose of this study was to investigate the effect of DVH outliers on the resulting quality of RapidPlan knowledge-based plans generated for patients with prostate cancer. First, 123 plans for patients with prostate cancer were used to populate the initial model (modelall). Next, modelall-20 and modelall-40 were created by excluding DVH outliers of bladder optimization contours 20 and 40 patients from modelall, respectively. These models were used to create plans for a 20-patient. The plans created using modelall-40 showed reductions of D30% and D50% in the bladder wall dose, and the DVH shape excluding outliers were affected. However, there were no significant differences in monitor units, target doses, or bladder wall doses between each treatment plan. Thus, we have shown that removal of DVH outliers from models does not affect the quality of plans created by the model.


Assuntos
Bases de Conhecimento , Neoplasias da Próstata , Radioterapia de Intensidade Modulada , Humanos , Masculino , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
17.
Phys Med ; 49: 19-27, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29866338

RESUMO

PURPOSE: As there have been few reports on quantitative analysis of inter-institutional results for independent monitor unit (MU) verification, we performed a multi-institutional study of verification to show the feasibility of applying the 3-5% action levels used in the U.S. and Europe, and also to show the results of inter-institutional comparisons. METHODS: A total of 5936 fields were collected from 12 institutions. We used commercial software employing the Clarkson algorithm for verification after a validation study of measurement and software comparisons was performed. The doses generated by the treatment planning systems (TPSs) were retrospectively analyzed using the verification software. RESULTS: Mean ±â€¯two standard deviations of all locations were 1.0 ±â€¯3.6%. There were larger differences for breast (4.0 ±â€¯4.0%) and for lung (2.5 ±â€¯5.8%). A total of 80% of the fields with differences over 5% of the action level involved breast and lung targets, with 7.2 ±â€¯5.4%. Inter-institutional comparisons showed various systematic differences for field shape for breast and differences in the fields were attributable to differences in reference point placement for lung. The large differences for breast and lung are partially attributable to differences in the methods used to correct for heterogeneity. CONCLUSIONS: The 5% action level may be feasible for verification; however, an understanding of larger differences in breast and lung plans is important in clinical practice. Based on the inter-institutional comparisons, care must be taken when determining an institution-specific action level from plans with different field shape settings and incorrectly placed reference points.


Assuntos
Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada , Humanos , Aceleradores de Partículas , Controle de Qualidade , Dosagem Radioterapêutica , Estudos Retrospectivos , Software
18.
J Radiat Res ; 59(4): 490-500, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29790997

RESUMO

In inhomogeneous media, there is often a large systematic difference in the dose between the conventional Clarkson algorithm (C-Clarkson) for independent calculation verification and the superposition-based algorithms of treatment planning systems (TPSs). These treatment site-dependent differences increase the complexity of the radiotherapy planning secondary check. We developed a simple and effective method of heterogeneity correction integrated with the Clarkson algorithm (L-Clarkson) to account for the effects of heterogeneity in the lateral dimension, and performed a multi-institutional study to evaluate the effectiveness of the method. In the method, a 2D image reconstructed from computed tomography (CT) images is divided according to lines extending from the reference point to the edge of the multileaf collimator (MLC) or jaw collimator for each pie sector, and the radiological path length (RPL) of each line is calculated on the 2D image to obtain a tissue maximum ratio and phantom scatter factor, allowing the dose to be calculated. A total of 261 plans (1237 beams) for conventional breast and lung treatments and lung stereotactic body radiotherapy were collected from four institutions. Disagreements in dose between the on-site TPSs and a verification program using the C-Clarkson and L-Clarkson algorithms were compared. Systematic differences with the L-Clarkson method were within 1% for all sites, while the C-Clarkson method resulted in systematic differences of 1-5%. The L-Clarkson method showed smaller variations. This heterogeneity correction integrated with the Clarkson algorithm would provide a simple evaluation within the range of -5% to +5% for a radiotherapy plan secondary check.


Assuntos
Algoritmos , Tomografia Computadorizada por Raios X , Mama/diagnóstico por imagem , Mama/efeitos da radiação , Relação Dose-Resposta à Radiação , Feminino , Humanos , Pulmão/diagnóstico por imagem , Pulmão/efeitos da radiação , Imagens de Fantasmas , Radiocirurgia , Reprodutibilidade dos Testes
19.
Radiat Oncol ; 13(1): 46, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29558940

RESUMO

BACKGROUND: The aim of this study was to evaluate the performance of a commercial knowledge-based planning system, in volumetric modulated arc therapy for prostate cancer at multiple radiation therapy departments. METHODS: In each institute, > 20 cases were assessed. For the knowledge-based planning, the estimated dose (ED) based on geometric and dosimetric information of plans was generated in the model. Lower and upper limits of estimated dose were saved as dose volume histograms for each organ at risk. To verify whether the models performed correctly, KBP was compared with manual optimization planning in two cases. The relationships between the EDs in the models and the ratio of the OAR volumes overlapping volume with PTV to the whole organ volume (Voverlap/Vwhole) were investigated. RESULTS: There were no significant dosimetric differences in OARs and PTV between manual optimization planning and knowledge-based planning. In knowledge-based planning, the difference in the volume ratio of receiving 90% and 50% of the prescribed dose (V90 and V50) between institutes were more than 5.0% and 10.0%, respectively. The calculated doses with knowledge-based planning were between the upper and lower limits of ED or slightly under the lower limit of ED. The relationships between the lower limit of ED and Voverlap/Vwhole were different among the models. In the V90 and V50 for the rectum, the maximum differences between the lower limit of ED among institutes were 8.2% and 53.5% when Voverlap/Vwhole for the rectum was 10%. In the V90 and V50 for the bladder, the maximum differences of the lower limit of ED among institutes were 15.1% and 33.1% when Voverlap/Vwhole for the bladder was 10%. CONCLUSION: Organs' upper and lower limits of ED in the models correlated closely with the Voverlap/Vwhole. It is important to determine whether the models in KBP match a different institute's plan design before the models can be shared.


Assuntos
Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Masculino , Órgãos em Risco , Dosagem Radioterapêutica
20.
Phys Med ; 45: 72-81, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29472094

RESUMO

PURPOSE: No multi-institutional studies of computer-based independent dose calculation have addressed the discrepancies among radiotherapy treatment planning systems (TPSs) and the verification programs for intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). We conducted a multi-institutional study to investigate whether ±5% is a reasonable action level for independent dose calculation for IMRT/VMAT. METHODS: In total, 477 IMRT/VMAT plans for prostate or head and neck (H&N) malignancies were retrospectively analyzed using a modified Clarkson-based commercial verification program. The doses from the TPSs and verification programs were compared using the mean ±1 standard deviation (SD). RESULTS: In the TPS-calculated dose comparisons for prostate and H&N malignancies, the sliding window (SW) technique (-2.5 ±â€¯1.8% and -5.3 ±â€¯2.6%) showed greater negative systematic differences than the step-and-shoot (S&S) technique (-0.3 ±â€¯2.2% and -0.8 ±â€¯2.2%). The VMAT dose differences for prostate and H&N malignancies were 0.9 ±â€¯1.8% and 1.1 ±â€¯3.3%, respectively. The SDs were larger for the H&N plans than for the prostate plans in both IMRT and VMAT. Such plans including more out-of-field control points showed greater systematic differences and SDs. CONCLUSIONS: This study will help individual institutions to establish an action level for agreement between primary calculations and verification for IMRT/VMAT. A local dose difference of ±5% at a point within the planning target volume (above -350 HU) may be a reasonable action level.


Assuntos
Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Masculino , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...