Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 288(23): 16800-16814, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23603902

RESUMO

Phytochromes act as photoswitches between the red- and far-red absorbing parent states of phytochromes (Pr and Pfr). Plant phytochromes display an additional thermal conversion route from the physiologically active Pfr to Pr. The same reaction pattern is found in prototypical biliverdin-binding bacteriophytochromes in contrast to the reverse thermal transformation in bathy bacteriophytochromes. However, the molecular origin of the different thermal stabilities of the Pfr states in prototypical and bathy bacteriophytochromes is not known. We analyzed the structures of the chromophore binding pockets in the Pfr states of various bathy and prototypical biliverdin-binding phytochromes using a combined spectroscopic-theoretical approach. For the Pfr state of the bathy phytochrome from Pseudomonas aeruginosa, the very good agreement between calculated and experimental Raman spectra of the biliverdin cofactor is in line with important conclusions of previous crystallographic analyses, particularly the ZZEssa configuration of the chromophore and its mode of covalent attachment to the protein. The highly homogeneous chromophore conformation seems to be a unique property of the Pfr states of bathy phytochromes. This is in sharp contrast to the Pfr states of prototypical phytochromes that display conformational equilibria between two sub-states exhibiting small structural differences at the terminal methine bridges A-B and C-D. These differences may mainly root in the interactions of the cofactor with the highly conserved Asp-194 that occur via its carboxylate function in bathy phytochromes. The weaker interactions via the carbonyl function in prototypical phytochromes may lead to a higher structural flexibility of the chromophore pocket opening a reaction channel for the thermal (ZZE → ZZZ) Pfr to Pr back-conversion.


Assuntos
Proteínas de Bactérias/química , Fitocromo/química , Pseudomonas aeruginosa/química , Sítios de Ligação
2.
J Phys Chem A ; 116(48): 11927-37, 2012 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-23167841

RESUMO

The present work outlines the implementation and performance of two cost efficient post-SCF extensions into the third-order SCC-DFTB code. The first one, the charge model 3 (CM3), corrects for errors in bond dipoles for an improved description of molecular charge distribution as compared to the standard Mulliken partitioning scheme. The second one focuses on the response of the charge density, that is, the electronic molecular polarizability, described inaccurately from SCC-DFTB due to the usage of a minimal atomic orbital basis. Here, a variational approach, based on scaled dipole integrals, was implemented, which clearly outperforms standard finite electric field approaches for polarizability calculations by approximately 1 order of magnitude. Both extensions in the present work rely on a set of empirical parameters, which were fitted against 112 organic molecules to match a reference data set from full density functional calculations with a large basis. As an achievement, notably improved electronic properties, that is, molecular dipole moments and polarizabilities, result from SCC-DFTB calculations at negligible additional computational cost. Furthermore, the accuracy of infrared and Raman intensities was tested as first-order derivatives of the new dipoles and polarizabilities as a function of normal mode vibrations. As a result, the current implementations cannot contribute to an improved prediction of relative intensity pattern from SCC-DFTB as compared to ab initio reference data.

3.
J Phys Chem A ; 116(36): 9131-41, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22894819

RESUMO

In this work, we augment the approximate density functional method SCC-DFTB (DFTB3) with the chemical-potential equalization (CPE) approach in order to improve the performance for molecular electronic polarizabilities. The CPE method, originally implemented for the NDDO type of methods by Giese and York, has been shown to significantly emend minimal basis methods with respect to the response properties and has been applied to SCC-DFTB recently. CPE allows this inherent limitation of minimal basis methods to be overcome by supplying an additional response density. The systematic underestimation is thereby corrected quantitatively without the need to extend the atomic orbital basis (i.e., without increasing the overall computational cost significantly). The dependency of polarizability as a function of the molecular charge state, especially, was significantly improved from the CPE extension of DFTB3. The empirical parameters introduced by the CPE approach were optimized for 172 organic molecules in order to match the results from density functional theory methods using large basis sets. However, the first-order derivatives of molecular polarizabilities (e.g., required to compute Raman activities) are not improved by the current CPE implementation (i.e., Raman spectra are not improved).


Assuntos
Benzeno/química , Glicina/química , Termodinâmica , Água/química , Modelos Moleculares
4.
J Phys Chem B ; 115(5): 1220-31, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21192668

RESUMO

A homology structural model was generated for plant phytochrome phyA utilizing the crystal structure of the sensory module of cyanobacterial phytochrome Cph1 (Cph1Δ2). As chromophores, either the native phytochromobilin cofactor (PΦB) or phycocyanobilin (PCB), the natural cofactor in Cph1, was incorporated. These homology models were further optimized by molecular dynamics (MD) simulations revealing a satisfying overall agreement with the crystal structure of Cph1Δ2. Notable differences in the PΦB adduct of phyA result from a restructuring of the small helical segment α(7) that leads to displacements of a few amino acids away from the cofactor. This repositioning of residues also include aspartate 218 such that, instead of its carbonyl function as in Cph1Δ2, an additional water molecule forms hydrogen bonds with the ring B and C NH groups. To validate the phyA structural model in the chromophore binding pocket, Raman spectra of the cofactor were calculated by means of the quantum mechanics/molecular mechanics (QM/MM) hybrid methodology and compared with the experimental resonance Raman (RR) spectra. The satisfactory overall agreement between calculated and experimental spectra is taken as an indication for the good quality of the structural model. Moreover, the methine bridge stretching modes and the effects of isotopic labeling at selected positions of the chromophore are very well reproduced to allow confirming even details of the methine bridge geometry as predicted by the homology model. Specifically, it is demonstrated that the experimental RR spectra are consistent with a torsional angle of ring D with respect to ring C that is distinctly higher for phyA-PCB (45°) and phyA-PΦB (42°) than for Cph1Δ2 (30°). Raman spectra calculated from different points of the MD trajectory display variations of the mode frequencies and intensities reflecting the structural fluctuations from snapshot to snapshot. The snapshot spectrum of the lowest energy structure and the sum of all snapshot spectra afford an equally good description of the experimental data. Particularly large variations between the snapshots are noted for the N-H in-plane bending mode of the pyrrole rings B and C, which reflect alterations of the hydrogen bond interactions brought about by fluctuations of water molecules in the cofactor cavity. This overestimation of the water molecule mobility is a consequence of the deficiency of the current QM/MM methodology that, due to the lack of appropriate protein force fields, cannot adequately account for the electrostatics in the cofactor pocket.


Assuntos
Fitocromo A/química , Proteínas de Bactérias/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Fotorreceptores Microbianos , Ficobilinas/química , Ficocianina/química , Fitocromo/química , Ligação Proteica , Proteínas Quinases/química , Estrutura Terciária de Proteína , Teoria Quântica , Análise Espectral Raman
5.
J Phys Chem B ; 114(50): 16677-86, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-21126042

RESUMO

The structural stability and conformational flexibility of two phycocyanobilin (PCB) binding bacteriaphytochromes, namely, Cph1 from Synechocystis and the GAF domain of SyB from Synechococcus, were studied using all-atoms molecular dynamics simulations techniques. In order to involve the tetrapyrrole cofactor in the simulation, new empirical force field parameters were developed for PCB which are compatible with the CHARMM22 force field for proteins. Special emphasis was made in understanding the conflicting NMR-based structures recently obtained for the two parent states, Pr and Pfr, of SyB(GAF) regarding the highly distorted cofactor conformation which is in contrast to all crystallographic measurements on other phytochrome species. The 25 ns all-atoms MD simulation of Cph1 in the Pr state and SyB(GAF) in its two parent states supports the picture of a relatively planar conformation of rings A, B, and C and ring D slightly twisted out of the ABC plane, in good agreement with crystallographic and spectroscopic experiments. SyB(GAF) converges to two very similar structures for the Pr state and also for the Pfr state with a ZZZssa conformation in disagreement with the ZZE configuration observed experimentally for other phytochromes. The failure in the prediction of the SyB(GAF) Pfr geometry is a consequence of deformed initial structure. Furthermore, in contrast to the results obtained for the SyB(GAF), the MD simulations showed a very stable Cph1 structure where an important hydrogen bond and water network in the chromophore binding pocket could be identified. We did not find evidence for structural heterogeneity either for Cph1 or SyB(GAF) at least on the nanosecond time scale.


Assuntos
Proteínas de Bactérias/química , Simulação de Dinâmica Molecular , Ficobilinas/química , Ficocianina/química , Fitocromo/química , Proteínas Quinases/química , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Fotorreceptores Microbianos , Ligação Proteica , Estrutura Terciária de Proteína
6.
Chemphyschem ; 11(6): 1265-74, 2010 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-20376872

RESUMO

The Raman spectrum of the phycoviolobilin cofactor of the alpha-subunit of phycoerythrocyanin was computed using a hybrid quantum mechanical/molecular mechanics (QM/MM) method in order to evaluate the performance of the QM/MM approach for calculating the vibrational spectra of protein-bound tetrapyrroles as found in phytochrome photoreceptors. A good overall agreement between the experimental and the calculated spectra was achieved. In addition, calculation of the vibrational properties of several snapshots extracted from a molecular dynamics simulation allowed us to investigate in detail the effect of the protein environment on the vibrational spectra. Heterogeneous broadening of most of the experimental bands could be reproduced in a satisfactory manner as the sum of individual spectra obtained by normal-mode-analysis (NMA). An exception is the bandwidth of the peak at 1646 cm(-1), which is underestimated by the NMA sum as well as by the instantaneous normal mode analysis (INMA) approach.


Assuntos
Ficobilinas/química , Ficocianina/química , Análise Espectral Raman , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , Teoria Quântica
7.
Biophys J ; 96(10): 4153-63, 2009 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-19450486

RESUMO

A quantum mechanics (QM)/molecular mechanics (MM) hybrid method was applied to the Pr state of the cyanobacterial phytochrome Cph1 to calculate the Raman spectra of the bound PCB cofactor. Two QM/MM models were derived from the atomic coordinates of the crystal structure. The models differed in the protonation site of His(260) in the chromophore-binding pocket such that either the delta-nitrogen (M-HSD) or the epsilon-nitrogen (M-HSE) carried a hydrogen. The optimized structures of the two models display small differences specifically in the orientation of His(260) with respect to the PCB cofactor and the hydrogen bond network at the cofactor-binding site. For both models, the calculated Raman spectra of the cofactor reveal a good overall agreement with the experimental resonance Raman (RR) spectra obtained from Cph1 in the crystalline state and in solution, including Cph1 adducts with isotopically labeled PCB. However, a distinctly better reproduction of important details in the experimental spectra is provided by the M-HSD model, which therefore may represent an improved structure of the cofactor site. Thus, QM/MM calculations of chromoproteins may allow for refining crystal structure models in the chromophore-binding pocket guided by the comparison with experimental RR spectra. Analysis of the calculated and experimental spectra also allowed us to identify and assign the modes that sensitively respond to chromophore-protein interactions. The most pronounced effect was noted for the stretching mode of the methine bridge A-B adjacent to the covalent attachment site of PCB. Due a distinct narrowing of the A-B methine bridge bond angle, this mode undergoes a large frequency upshift as compared with the spectrum obtained by QM calculations for the chromophore in vacuo. This protein-induced distortion of the PCB geometry is the main origin of a previous erroneous interpretation of the RR spectra based on QM calculations of the isolated cofactor.


Assuntos
Proteínas de Bactérias/química , Modelos Moleculares , Fitocromo/química , Proteínas Quinases/química , Synechocystis , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Fotorreceptores Microbianos , Ficobilinas/química , Ficobilinas/metabolismo , Ficocianina/química , Ficocianina/metabolismo , Fitocromo/metabolismo , Conformação Proteica , Proteínas Quinases/metabolismo , Estabilidade Proteica , Teoria Quântica , Soluções , Análise Espectral Raman
8.
J Phys Chem B ; 113(4): 945-58, 2009 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-19123828

RESUMO

The conformational flexibility of the tetrapyrrolic phytochromobilin (PPhiB) chromophore of the bacteriophytochrome Deinococcus radiodurans (DrCBD) in the Pr state has been investigated by molecular dynamics simulations. Because these simulations require accurate force field parameters for the prosthetic group, in the present work we developed new empirical force field parameters for the PPhiB molecule that are compatible with the CHARMM22 force field for proteins. For this reason, the new force field parameters for the nonbonded (partial atomic charges) and bonded (bonds, angles, dihedrals, improper) energy terms were derived by reproducing ab initio target data following the methodology used in the development of the CHARMM22 force field. This new set of parameters was employed to analyze structural and dynamical features of PPhiB inside DrCBD. The 45 ns all-atom molecular dynamics (MD) simulation reveals the existence of two stable conformational states of the chromophore characterized by distinct torsional angles around the C-C bond at the methine bridge connecting rings A and B of the tetrapyrrole. This result supports experimental observations derived from NMR and resonance Raman spectroscopy. Furthermore, statistical analysis of H-bonding events allowed us to identify (a) important H-bonds between the propionic side chains of the chromophore and the apoprotein which may be relevant for the signal transduction step during the photoinduced cycle and (b) a network of eight water molecules which remain in the vicinity of the chromophore during the entire 45 ns production run.


Assuntos
Deinococcus/química , Fitocromo/química , Polietilenoglicóis/química , Aminoácidos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Calorimetria , Deinococcus/metabolismo , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Fitocromo/metabolismo , Propionatos/química , Termodinâmica
9.
J Biol Chem ; 283(30): 21251-66, 2008 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-18480055

RESUMO

Photointerconversion between the red light-absorbing (Pr) form and the far-red light-absorbing (Pfr) form is the central feature that allows members of the phytochrome (Phy) superfamily to act as reversible switches in light perception. Whereas the chromophore structure and surrounding binding pocket of Pr have been described, those for Pfr have remained enigmatic for various technical reasons. Here we describe a novel pair of Phys from two thermophilic cyanobacteria, Synechococcus sp. OS-A and OS-B', that overcome several of these limitations. Like other cyanobacterial Phys, SyA-Cph1 and SyB-Cph1 covalently bind the bilin phycocyanobilin via their cGMP phosphodiesterase/adenyl cyclase/FhlA (GAF) domains and then assume the photointerconvertible Pr and Pfr states with absorption maxima at 630 and 704 nm, respectively. However, they are naturally missing the N-terminal Per/Arndt/Sim domain common to others in the Phy superfamily. Importantly, truncations containing only the GAF domain are monomeric, photochromic, and remarkably thermostable. Resonance Raman and NMR spectroscopy show that all four pyrrole ring nitrogens of phycocyanobilin are protonated both as Pr and following red light irradiation, indicating that the GAF domain by itself can complete the Pr to Pfr photocycle. (1)H-(15)N two-dimensional NMR spectra of isotopically labeled preparations of the SyB-Cph1 GAF domain revealed that a number of amino acids change their environment during photoconversion of Pr to Pfr, which can be reversed by subsequent photoconversion back to Pr. Through three-dimensional NMR spectroscopy before and after light photoexcitation, it should now be possible to define the movements of the chromophore and binding pocket during photoconversion. We also generated a series of strongly red fluorescent derivatives of SyB-Cph1, which based on their small size and thermostability may be useful as cell biological reporters.


Assuntos
Cianobactérias/metabolismo , Fitocromo/química , Sequência de Aminoácidos , Luz , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Espectrometria de Fluorescência/métodos , Espectrofotometria Ultravioleta/métodos , Análise Espectral Raman , Synechococcus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...