Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(9): eadf5500, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36857452

RESUMO

BCS theory has been widely successful at describing elemental bulk superconductors. Yet, as the length scales of such superconductors approach the atomic limit, dimensionality as well as the environment of the superconductor can lead to drastically different and unpredictable superconducting behavior. Here, we report a threefold enhancement of the superconducting critical temperature and gap size in ultrathin epitaxial Al films on Si(111), when approaching the 2D limit, based on high-resolution scanning tunneling microscopy/spectroscopy (STM/STS) measurements. Using spatially resolved spectroscopy, we characterize the vortex structure in the presence of a strong Zeeman field and find evidence of a paramagnetic Meissner effect originating from odd-frequency pairing contributions. These results illustrate two notable influences of reduced dimensionality on a BCS superconductor and present a platform to study BCS superconductivity in large magnetic fields.

2.
Nat Commun ; 13(1): 4452, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915086

RESUMO

The influence of interface electronic structure is vital to control lower dimensional superconductivity and its applications to gated superconducting electronics, and superconducting layered heterostructures. Lower dimensional superconductors are typically synthesized on insulating substrates to reduce interfacial driven effects that destroy superconductivity and delocalize the confined wavefunction. Here, we demonstrate that the hybrid electronic structure formed at the interface between a lead film and a semiconducting and highly anisotropic black phosphorus substrate significantly renormalizes the superconductivity in the lead film. Using ultra-low temperature scanning tunneling microscopy and spectroscopy, we characterize the renormalization of lead's quantum well states, its superconducting gap, and its vortex structure which show strong anisotropic characteristics. Density functional theory calculations confirm that the renormalization of superconductivity is driven by hybridization at the interface which modifies the confinement potential and imprints the anisotropic characteristics of the semiconductor substrate on selected regions of the Fermi surface of lead. Using an analytical model, we link the modulated superconductivity to an anisotropy that selectively tunes the superconducting order parameter in reciprocal space. These results illustrate that interfacial hybridization can be used to tune superconductivity in quantum technologies based on lower dimensional superconducting electronics.

3.
Nano Lett ; 21(16): 6748-6755, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34351781

RESUMO

Mutually interacting magnetic atoms coupled to a superconductor have gained enormous interest due to their potential for the realization of topological superconductivity. Individual magnetic impurities produce states within the superconducting energy gap known as Yu-Shiba-Rusinov (YSR) states. Here, using the tip of a scanning tunneling microscope, we artificially craft spin arrays consisting of an Fe adatom interacting with an assembly of interstitial Fe atoms (IFA) on a superconducting oxygen-reconstructed Ta(100) surface and show that the magnetic interaction between the adatom and the IFA assembly can be tuned by adjusting the number of IFAs in the assembly. The YSR state experiences a characteristic crossover in its energetic position and particle-hole spectral weight asymmetry when the Kondo resonance shows spectral depletion around the Fermi energy. By the help of slave-boson mean-field theory (SBMFT) and numerical renormalization group (NRG) calculations we associate the crossover with the transition from decoupled Kondo singlets to an antiferromagnetic ground state of the Fe adatom spin and the IFA assembly effective spin.

4.
Nat Commun ; 8: 13939, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28059102

RESUMO

Establishing the relation between ubiquitous antiferromagnetism in the parent compounds of unconventional superconductors and their superconducting phase is important for understanding the complex physics in these materials. Going from bulk systems to thin films additionally affects their phase diagram. For Fe1+yTe, the parent compound of Fe1+ySe1-xTex superconductors, bulk-sensitive neutron diffraction revealed an in-plane oriented diagonal double-stripe antiferromagnetic spin structure. Here we show by spin-resolved scanning tunnelling microscopy that the spin direction at the surfaces of bulk Fe1+yTe and thin films grown on the topological insulator Bi2Te3 is canted out of the high-symmetry directions of the surface unit cell resulting in a perpendicular spin component, keeping the diagonal double-stripe order. As the magnetism of the Fe d-orbitals is intertwined with the superconducting pairing in Fe-based materials, our results imply that the superconducting properties at the surface of the related superconducting compounds might be different from the bulk.

5.
Sci Rep ; 3: 2979, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24132046

RESUMO

The notion of spontaneous formation of an inhomogeneous superconducting state is at the heart of most theories attempting to understand the superconducting state in the presence of strong disorder. Using scanning tunneling spectroscopy and high resolution scanning transmission electron microscopy, we experimentally demonstrate that under the competing effects of strong homogeneous disorder and superconducting correlations, the superconducting state of a conventional superconductor, NbN, spontaneously segregates into domains. Tracking these domains as a function of temperature we observe that the superconducting domains persist across the bulk superconducting transition, Tc, and disappear close to the pseudogap temperature, T*, where signatures of superconducting correlations disappear from the tunneling spectrum and the superfluid response of the system.

6.
Sci Rep ; 3: 1357, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23446946

RESUMO

The persistence of a soft gap in the density of states above the superconducting transition temperature Tc, the pseudogap, has long been thought to be a hallmark of unconventional high-temperature superconductors. However, in the last few years this paradigm has been strongly revised by increasing experimental evidence for the emergence of a pseudogap state in strongly-disordered conventional superconductors. Nonetheless, the nature of this state, probed primarily through scanning tunneling spectroscopy (STS) measurements, remains partly elusive. Here we show that the dynamic response above Tc, obtained from the complex ac conductivity, is highly modified in the pseudogap regime of strongly disordered NbN films. Below the pseudogap temperature, T*, the superfluid stiffness acquires a strong frequency dependence associated with a marked slowing down of critical fluctuations. When translated into the length-scale of fluctuations, our results suggest a scenario of thermal phase fluctuations between superconducting domains in a strongly disordered s-wave superconductor.

7.
Rev Sci Instrum ; 84(12): 123905, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24387444

RESUMO

We report the construction and performance of a low temperature, high field scanning tunneling microscope (STM) operating down to 350 mK and in magnetic fields up to 9 T, with thin film deposition and in situ single crystal cleaving capabilities. The main focus lies on the simple design of STM head and a sample holder design that allows us to get spectroscopic data on superconducting thin films grown in situ on insulating substrates. Other design details on sample transport, sample preparation chamber, and vibration isolation schemes are also described. We demonstrate the capability of our instrument through the atomic resolution imaging and spectroscopy on NbSe2 single crystal and spectroscopic maps obtained on homogeneously disordered NbN thin film.

8.
Phys Rev Lett ; 107(21): 217003, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-22181915

RESUMO

We analyze the occurrence of the Berezinskii-Kosterlitz-Thouless (BKT) transition in thin films of NbN at various film thickness, by probing the effect of vortex fluctuations on the temperature dependence of the superfluid density below T(BKT) and of the resistivity above T(BKT). By direct comparison between the experimental data and the theory, we show the crucial role played by the vortex-core energy in determining the characteristic signatures of the BKT physics, and we estimate its dependence on the disorder level. Our work provides a paradigmatic example of BKT physics in a quasi-two-dimensional superconductor.

9.
Phys Rev Lett ; 106(4): 047001, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21405347

RESUMO

We explore the role of phase fluctuations in a three-dimensional s-wave superconductor, NbN, as we approach the critical disorder for destruction of the superconducting state. Close to critical disorder, we observe a finite gap in the electronic spectrum which persists at temperatures well above T(c). The superfluid density is strongly suppressed at low temperatures and evolves towards a linear-T variation at higher temperatures. These observations provide strong evidence that phase fluctuations play a central role in the formation of a pseudogap state in a disordered s-wave superconductor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA