Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 33 Suppl 2: 3-10, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30772932

RESUMO

RATIONALE: Atmospheric pressure drift tube ion mobility is a powerful addition to the Orbitrap mass spectrometer enabling direct separation of isomers. Apart from offering high resolving power in a compact design, it also facilitates optimization of the separation gas, as shown here for a series of biologically relevant isomer pairs. METHODS: An Excellims MA3100 High-Resolution Atmospheric Pressure Ion Mobility Spectrometer (HR-IMS) was coupled to a Thermo Scientific™ Q Exactive™ Focus hybrid quadrupole-Orbitrap™ mass spectrometer, using an Excellims Directspray™ Electrospray Ionization source and a gas mixture setup to provide various drift gases (air, CO2 and mixtures). This instrument combination was used to separate isomers of eight pairs of metabolites and gangliosides, optimizing drift gas conditions for best separation of each set. RESULTS: All but one of the isomers pairs provided could be partially or fully separated by the HR-IMS-MS combination using ion mobility drift times. About half of the separated compounds showed significantly better analytical separation when analyzed in a mixture of CO2 and air rather than air or CO2 alone. Resolving power of up to 102 was achieved using the 10 cm atmospheric drift tube ion mobility add-on for the Orbitrap mass spectrometer. CONCLUSIONS: The present analysis demonstrates the usefulness of using atmospheric drift tube IMS on an Orbitrap mass spectrometer to characterize the isomeric composition of samples. It also highlights the potential benefits of being able to quickly optimize the drift gas composition to selectively maximize the mobility difference for isomer separation.


Assuntos
Dióxido de Carbono/química , Gangliosídeos/química , Gases/química , Espectrometria de Massas/métodos , Ar/análise , Isomerismo , Espectrometria de Massas/instrumentação
2.
Proteomics ; 8(22): 4647-56, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18937253

RESUMO

With the advent of a new generation of high-resolution mass spectrometers, the fields of proteomics and metabolomics have gained powerful new tools. In this paper, we demonstrate a novel computational method that improves the mass accuracy of the LTQ-Orbitrap mass spectrometer from an initial +/- 1-2 ppm, obtained by the standard software, to an absolute median of 0.21 ppm (SD 0.21 ppm). With the increased mass accuracy it becomes much easier to match mass chromatograms in replicates and different sample types, even if compounds are detected at very low intensities. The proposed method exploits the ubiquitous presence of background ions in LC-MS profiles for accurate alignment and internal mass calibration, making it applicable for all types of MS equipment. The accuracy of this approach will facilitate many downstream systems biology applications, including mass-based molecule identification, ab initio metabolic network reconstruction, and untargeted metabolomics in general.


Assuntos
Cromatografia Líquida/métodos , Biologia Computacional/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos , Proteômica/métodos , Íons , Metaboloma , Proteoma , Sensibilidade e Especificidade , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA