Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744914

RESUMO

Membrane-bound styrene oxide isomerase (SOI) catalyses the Meinwald rearrangement-a Lewis-acid-catalysed isomerization of an epoxide to a carbonyl compound-and has been used in single and cascade reactions. However, the structural information that explains its reaction mechanism has remained elusive. Here we determine cryo-electron microscopy (cryo-EM) structures of SOI bound to a single-domain antibody with and without the competitive inhibitor benzylamine, and elucidate the catalytic mechanism using electron paramagnetic resonance spectroscopy, functional assays, biophysical methods and docking experiments. We find ferric haem b bound at the subunit interface of the trimeric enzyme through H58, where Fe(III) acts as the Lewis acid by binding to the epoxide oxygen. Y103 and N64 and a hydrophobic pocket binding the oxygen of the epoxide and the aryl group, respectively, position substrates in a manner that explains the high regio-selectivity and stereo-specificity of SOI. Our findings can support extending the range of epoxide substrates and be used to potentially repurpose SOI for the catalysis of new-to-nature Fe-based chemical reactions.

2.
Nat Commun ; 14(1): 8317, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110403

RESUMO

In this study, we characterize Designed Ankyrin Repeat Proteins (DARPins) as investigative tools to probe botulinum neurotoxin A1 (BoNT/A1) structure and function. We identify DARPin-F5 that completely blocks SNAP25 substrate cleavage by BoNT/A1 in vitro. X-ray crystallography reveals that DARPin-F5 inhibits BoNT/A1 activity by interacting with a substrate-binding region between the α- and ß-exosite. This DARPin does not block substrate cleavage of BoNT/A3, indicating that DARPin-F5 is a subtype-specific inhibitor. BoNT/A1 Glu-171 plays a critical role in the interaction with DARPin-F5 and its mutation to Asp, the residue found in BoNT/A3, results in a loss of inhibition of substrate cleavage. In contrast to the in vitro results, DARPin-F5 promotes faster substrate cleavage of BoNT/A1 in primary neurons and muscle tissue by increasing toxin translocation. Our findings could have important implications for the application of BoNT/A1 in therapeutic areas requiring faster onset of toxin action combined with long persistence.


Assuntos
Toxinas Botulínicas Tipo A , Toxinas Botulínicas , Clostridium botulinum , Proteínas de Repetição de Anquirina Projetadas , Toxinas Botulínicas Tipo A/metabolismo , Clostridium botulinum/genética
3.
Biomol NMR Assign ; 17(2): 301-307, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37861970

RESUMO

Kinesin is a motor protein, comprised of two heavy and two light chains that transports cargo along the cytoskeletal microtubule filament network. The heavy chain has a neck domain connecting the ATPase motor head responsible for walking along microtubules, with the stalk and subsequent tail domains that bind cargo. The neck domain consists of a coiled coli homodimer with about five heptad repeats, preceded by a linker region that joins to the ATPase head. Here we report 1H, 15N, and 13C NMR assignments and a solution structure for the kinesin neck domain from rat isoform Kif5c. The calculation of the NMR structure of the homodimer was facilitated by unambiguously assigning sidechain NOEs between heptad a and d positions to interchain contacts, since these positions are too far apart to give sidechain contacts in the monomers. The dimeric coiled coil NMR structure is similar to the previously described X-ray structure, whereas the linker region is disordered in solution but contains a short segment with ß-strand propensity- the ß-linker. Only the coiled coil is protected from solvent exchange, with ∆G values for hydrogen exchange on the order of 4-6 kcal/mol. The high stability of the hydrogen-bonded α-helical structure makes it unlikely that unzippering of the coiled coil is involved in kinesin walking. Rather, the linker region serves as a flexible hinge between the kinesin head and neck.


Assuntos
Cinesinas , Microtúbulos , Ratos , Animais , Cinesinas/química , Cinesinas/metabolismo , Sequência de Aminoácidos , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Microtúbulos/metabolismo , Hidrogênio
4.
Sci Rep ; 13(1): 10159, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349348

RESUMO

Structure elucidation of inactive-state GPCRs still mostly relies on X-ray crystallography. The major goal of our work was to create a new GPCR tool that would provide receptor stability and additional soluble surface for crystallization. Towards this aim, we selected the two-stranded antiparallel coiled coil as a domain fold that satisfies both criteria. A selection of antiparallel coiled coils was used for structure-guided substitution of intracellular loop 3 of the ß3 adrenergic receptor. Unexpectedly, only the two GPCR variants containing thermostable coiled coils were expressed. We showed that one GPCR chimera is stable upon purification in detergent, retains ligand-binding properties, and can be crystallized. However, the quality of the crystals was not suitable for structure determination. By using two other examples, 5HTR2C and α2BAR, we demonstrate that our approach is generally suitable for the stabilization of GPCRs. To provide additional surface for promoting crystal contacts, we replaced in a structure-based approach the loop connecting the antiparallel coiled coil by T4L. We found that the engineered GPCR is even more stable than the coiled-coil variant. Negative-staining TEM revealed a homogeneous distribution of particles, indicating that coiled-coil-T4L receptor variants might also be promising candidate proteins for structure elucidation by cryo-EM. Our approach should be of interest for applications that benefit from stable GPCRs.


Assuntos
Receptores Acoplados a Proteínas G , Sequência de Aminoácidos , Estrutura Secundária de Proteína , Cristalografia por Raios X , Domínios Proteicos , Receptores Acoplados a Proteínas G/genética
5.
Virulence ; 13(1): 1868-1883, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36261919

RESUMO

The development of anti-virulence drug therapy against Acinetobacter baumannii infections would provide an alternative to traditional antibacterial therapy that are increasingly failing. Here, we demonstrate that the OmpR transcriptional regulator plays a pivotal role in the pathogenesis of diverse A. baumannii clinical strains in multiple murine and G. mellonella invertebrate infection models. We identified OmpR-regulated genes using RNA sequencing and further validated two genes whose expression can be used as robust biomarker to quantify OmpR inhibition in A. baumannii. Moreover, the determination of the structure of the OmpR DNA binding domain of A. baumannii and the development of in vitro protein-DNA binding assays enabled the identification of an OmpR small molecule inhibitor. We conclude that OmpR is a valid and unexplored target to fight A. baumannii infections and we believe that the described platform combining in silico methods, in vitro OmpR inhibitory assays and in vivo G. mellonella surrogate infection model will facilitate future drug discovery programs.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Camundongos , Animais , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Virulência/genética , Antibacterianos/uso terapêutico
6.
Biochim Biophys Acta Biomembr ; 1864(3): 183825, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871574

RESUMO

The evolutionary conserved YidC is a unique dual-function membrane protein that adopts insertase and chaperone conformations. The N-terminal helix of Escherichia coli YidC functions as an uncleaved signal sequence and is important for membrane insertion and interaction with the Sec translocon. Here, we report the first crystal structure of Thermotoga maritima YidC (TmYidC) including the N-terminal amphipathic helix (N-AH) (PDB ID: 6Y86). Molecular dynamics simulations show that N-AH lies on the periplasmic side of the membrane bilayer forming an angle of about 15° with the membrane surface. Our functional studies suggest a role of N-AH for the species-specific interaction with the Sec translocon. The reconstitution data and the superimposition of TmYidC with known YidC structures suggest an active insertase conformation for YidC. Molecular dynamics (MD) simulations of TmYidC provide evidence that N-AH acts as a membrane recognition helix for the YidC insertase and highlight the flexibility of the C1 region underlining its ability to switch between insertase and chaperone conformations. A structure-based model is proposed to rationalize how YidC performs the insertase and chaperone functions by re-positioning of N-AH and the other structural elements.


Assuntos
Proteínas de Bactérias/química , Membrana Celular/metabolismo , Proteínas de Membrana Transportadoras/química , Simulação de Dinâmica Molecular , Thermotoga maritima/metabolismo , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Proteínas de Membrana Transportadoras/metabolismo , Conformação Proteica
7.
J Biol Chem ; 296: 100684, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33891946

RESUMO

Botulinum neurotoxins (BoNTs) are among the most widely used therapeutic proteins; however, only two subtypes within the seven serotypes, BoNT/A1 and BoNT/B1, are currently used for medical and cosmetic applications. Distinct catalytic properties, substrate specificities, and duration of enzymatic activities potentially make other subtypes very attractive candidates to outperform conventional BoNTs in particular therapeutic applications. For example, BoNT/A3 has a significantly shorter duration of action than other BoNT/A subtypes. Notably, BoNT/A3 is the subtype with the least conserved catalytic domain among BoNT/A subtypes. This suggests that the sequence differences, many of which concern the α-exosite, contribute to the observed functional differences in toxin persistence by affecting the binding of the substrate SNAP-25 and/or the stability of the catalytic domain fold. To identify the molecular determinants accounting for the differences in the persistence observed for BoNT/A subtypes, we determined the crystal structure of the catalytic domain of BoNT/A3 (LC/A3). The structure of LC/A3 was found to be very similar to that of LC/A1, suggesting that the overall mode of SNAP-25 binding is common between these two proteins. However, circular dichroism (CD) thermal unfolding experiments demonstrated that LC/A3 is significantly less stable than LC/A1, implying that this might contribute to the reduced toxin persistence of BoNT/A3. These findings could be of interest in developing next-generation therapeutic toxins.


Assuntos
Toxinas Botulínicas Tipo A/química , Domínio Catalítico , Sequência de Aminoácidos , Toxinas Botulínicas Tipo A/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Especificidade por Substrato
8.
FEBS Lett ; 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32298460

RESUMO

Coronin proteins are widely expressed among eukaryotic organisms. Most coronins consist of a WD-repeat domain followed by a C-terminal coiled coil. Dictyostelium discoideum expresses a single short coronin coronin A, which has been implicated in both actin modulation and multicellular differentiation. Whether coronin A's coiled coil is important for functionality, as well as the oligomeric state of coronin A is not known. Here, we show that the coiled-coil domain in Dictyostelium coronin A functions in homodimerization, is dispensable for coronin A stability and localization but essential for multicellular differentiation. These results allow a better understanding of the role for the coiled-coil domain of coronin A in oligomerization and demonstrate that its presence is essential for multicellular differentiation.

9.
Toxicon ; 175: 36-43, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31783045

RESUMO

A dual-receptor interaction with a polysialoganglioside and synaptic vesicle glycoprotein 2 (SV2) is required for botulinum neurotoxin A (BoNT) toxicity. Here, we review what is currently known about the BoNT/A-SV2 interaction based on structural studies. Currently, five crystal structures of the receptor-binding domain (Hc) of BoNT subtypes A1 and A2 complexed to the large luminal domain (LD4) of SV2C have been determined. On the basis of the available structures, we will discuss the importance of protein-protein and protein-carbohydrate interactions for BoNT/A toxicity as well as the high plasticity of BoNT/A for receptor recognition by tolerating a variety of side-chain interactions at the interface. A plausible explanation how receptor-binding specificity of BoNT/A may be achieved without an extensive and conserved side chain-side chain interaction network will be provided.


Assuntos
Toxinas Botulínicas Tipo A/química , Glicoproteínas de Membrana/química , Proteínas do Tecido Nervoso/química , Gangliosídeos , Humanos , Ligação Proteica , Elementos Estruturais de Proteínas , Células Receptoras Sensoriais
10.
Structure ; 27(9): 1375-1383.e3, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31353241

RESUMO

Katanin is a microtubule-severing enzyme that is crucial for many cellular processes. Katanin consists of two subunits, p60 and p80, that form a stable complex. The interaction between subunits is mediated by the p60 N-terminal microtubule-interacting and -trafficking domain (p60-MIT) and the p80 C-terminal domain (p80-CTD). Here, we performed a biophysical characterization of the mouse p60-MIT:p80-CTD heterodimer and show that this complex can assemble into heterotetramers. We identified two mutations that enhance heterotetramer formation and determined the X-ray crystal structure of this mutant complex. The structure revealed a domain-swapped heterotetramer consisting of two p60-MIT:p80-CTD heterodimers. Structure-based sequence alignments suggest that heterotetramerization of katanin might be a common feature of various species. Furthermore, we show that enhanced heterotetramerization of katanin impairs its microtubule end-binding properties and increases the enzyme's microtubule lattice binding and severing activities. Therefore, our findings suggest the existence of different katanin oligomers that possess distinct functional properties.


Assuntos
Katanina/química , Mutação , Animais , Sítios de Ligação , Cristalografia por Raios X , Katanina/genética , Katanina/metabolismo , Camundongos , Microtúbulos/metabolismo , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Multimerização Proteica , Alinhamento de Sequência
11.
Structure ; 26(3): 375-382.e4, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29395789

RESUMO

CAMSAP/Patronin family members regulate the organization and stability of microtubule minus ends in various systems ranging from mitotic spindles to differentiated epithelial cells and neurons. Mammalian CAMSAP2 and CAMSAP3 bind to growing microtubule minus ends, where they form stretches of stabilized microtubule lattice. The microtubule-severing ATPase katanin interacts with CAMSAPs and limits the length of CAMSAP-decorated microtubule stretches. Here, by using biochemical, biophysical, and structural approaches, we reveal that a short helical motif conserved in CAMSAP2 and CAMSAP3 binds to the heterodimer formed by the N- and C-terminal domains of katanin subunits p60 and p80, respectively. The identified CAMSAP-katanin binding mode is supported by mutational analysis and genome-editing experiments. It is strikingly similar to the one seen in the ASPM-katanin complex, which is responsible for microtubule minus-end regulation in mitotic spindles. Our work provides a general molecular mechanism for the cooperation of katanin with major microtubule minus-end regulators.


Assuntos
Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Katanina/química , Katanina/metabolismo , Animais , Sítios de Ligação , Proteínas do Citoesqueleto/genética , Edição de Genes , Humanos , Katanina/genética , Camundongos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica , Domínios Proteicos
12.
Proc Natl Acad Sci U S A ; 114(46): E9821-E9828, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29087332

RESUMO

Nucleotidyl cyclases, including membrane-integral and soluble adenylyl and guanylyl cyclases, are central components in a wide range of signaling pathways. These proteins are architecturally diverse, yet many of them share a conserved feature, a helical region that precedes the catalytic cyclase domain. The role of this region in cyclase dimerization has been a subject of debate. Although mutations within this region in various cyclases have been linked to genetic diseases, the molecular details of their effects on the enzymes remain unknown. Here, we report an X-ray structure of the cytosolic portion of the membrane-integral adenylyl cyclase Cya from Mycobacterium intracellulare in a nucleotide-bound state. The helical domains of each Cya monomer form a tight hairpin, bringing the two catalytic domains into an active dimerized state. Mutations in the helical domain of Cya mimic the disease-related mutations in human proteins, recapitulating the profiles of the corresponding mutated enzymes, adenylyl cyclase-5 and retinal guanylyl cyclase-1. Our experiments with full-length Cya and its cytosolic domain link the mutations to protein stability, and the ability to induce an active dimeric conformation of the catalytic domains. Sequence conservation indicates that this domain is an integral part of cyclase machinery across protein families and species. Our study provides evidence for a role of the helical domain in establishing a catalytically competent dimeric cyclase conformation. Our results also suggest that the disease-associated mutations in the corresponding regions of human nucleotidyl cyclases disrupt the normal helical domain structure.


Assuntos
Adenilil Ciclases/química , Adenilil Ciclases/metabolismo , Domínio Catalítico , Complexo Mycobacterium avium/enzimologia , Conformação Proteica , Adenilil Ciclases/genética , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência Conservada , Cristalografia por Raios X , Citosol/enzimologia , Dimerização , Ativação Enzimática , Estabilidade Enzimática , Guanilato Ciclase/química , Guanilato Ciclase/genética , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Complexo Mycobacterium avium/genética , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Alinhamento de Sequência , Análise de Sequência de Proteína
13.
Sci Rep ; 7(1): 14893, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29097679

RESUMO

Interactions between microtubule (MT) interacting and trafficking (MIT) domains and their binding proteins are important for the accurate progression of many cellular processes that require the AAA+ ATPase machinery. Therefore, knowledge on the structural basis of MIT domain interactions is crucial for understanding the molecular mechanisms underlying AAA+ ATPase function. Katanin is a MT-severing AAA+ ATPase that consists of p60 and p80 subunits. Although, the hexameric p60 subunit is active alone, its association with the p80 subunit greatly enhances both the MT-binding and -severing activities of katanin. However, the molecular mechanism of how the p80 subunit contributes to katanin function is currently unknown. Here, we structurally and functionally characterized the interaction between the two katanin subunits that is mediated by the p60-MIT domain and the p80 C-terminal domain (p80-CTD). We show that p60-MIT and p80-CTD form a tight heterodimeric complex, whose high-resolution structure we determined by X-ray crystallography. Based on the crystal structure, we identified two conserved charged residues that are important for p60-MIT:p80-CTD complex formation and katanin function. Moreover, p60-MIT was compared with other MIT domain structures and similarities are discussed.


Assuntos
Katanina/metabolismo , Animais , Cristalografia por Raios X , Katanina/química , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas , Multimerização Proteica
15.
Sci Rep ; 7(1): 2332, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28539655

RESUMO

Angiopoietins are a family of growth factors that are ligands for the tyrosine kinase receptor, Tie2. Angiopoietin 1 (Ang-1) is agonistic for Tie2, plays a key role in blood vessel maturation and stability and has been shown to possess anti-inflammatory properties. However, Tie2 expression has been demonstrated on human neutrophils and the observation that neutrophils migrate in response to Ang-1 in vitro has confounded research into its exact role in inflammation as well as its potential use as a therapeutic agent. We used a mouse model of peritoneal neutrophilic inflammation to determine if Ang-1 could stimulate neutrophil migration in vivo. Tie2 expression was demonstrated on mouse neutrophils. In addition, recombinant human Ang-1 induced significant chemotaxis of isolated mouse neutrophils in a Tie2- and CD18-dependent manner. Subsequently, co-immunoprecipitation of Ang-1 and CD18 demonstrated their interaction. Intraperitoneal injection of an engineered angiopoietin-1, MAT.Ang-1, induced significant neutrophil migration into the peritoneum and a significant increase in the levels of CCL4 in peritoneal lavage fluid. Depletion of resident peritoneal macrophages prior to, or concomitant injections of an anti-CCL4 antibody with MAT.Ang-1 resulted in a significant reduction in neutrophil recruitment. These data indicate a pro-inflammatory role for Ang-1 with respect to neutrophil recruitment.


Assuntos
Angiopoietina-1/genética , Antígenos CD18/genética , Quimiocina CCL4/genética , Inflamação/genética , Receptor TIE-2/genética , Angiopoietina-1/administração & dosagem , Animais , Movimento Celular/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Camundongos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Neutrófilos/patologia , Lavagem Peritoneal , Peritônio/efeitos dos fármacos , Peritônio/metabolismo , Peritônio/patologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Transdução de Sinais/efeitos dos fármacos
16.
Structure ; 25(6): 924-932.e4, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28552577

RESUMO

Microtubule plus-end tracking proteins (+TIPs) are involved in virtually all microtubule-based processes. End-binding (EB) proteins are considered master regulators of +TIP interaction networks, since they autonomously track growing microtubule ends and recruit a plethora of proteins to this location. Two major EB-interacting elements have been described: CAP-Gly domains and linear SxIP sequence motifs. Here, we identified LxxPTPh as a third EB-binding motif that enables major +TIPs to interact with EBs at microtubule ends. In contrast to EB-SxIP and EB-CAP-Gly, the EB-LxxPTPh binding mode does not depend on the C-terminal tail region of EB. Our study reveals that +TIPs developed additional strategies besides CAP-Gly and SxIP to target EBs at growing microtubule ends. They further provide a unique basis to discover novel +TIPs, and to dissect the role of key interaction nodes and their differential regulation for hierarchical +TIP network organization and function in eukaryotic organisms.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Animais , Sítios de Ligação , Células COS , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Chlorocebus aethiops , Cristalografia por Raios X , Polarização de Fluorescência , Proteínas dos Microtúbulos/química , Proteínas dos Microtúbulos/genética , Proteínas dos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Modelos Moleculares , Proteínas Nucleares/genética , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/genética
17.
Nat Cell Biol ; 19(5): 480-492, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28436967

RESUMO

ASPM (known as Asp in fly and ASPM-1 in worm) is a microcephaly-associated protein family that regulates spindle architecture, but the underlying mechanism is poorly understood. Here, we show that ASPM forms a complex with another protein linked to microcephaly, the microtubule-severing ATPase katanin. ASPM and katanin localize to spindle poles in a mutually dependent manner and regulate spindle flux. X-ray crystallography revealed that the heterodimer formed by the N- and C-terminal domains of the katanin subunits p60 and p80, respectively, binds conserved motifs in ASPM. Reconstitution experiments demonstrated that ASPM autonomously tracks growing microtubule minus ends and inhibits their growth, while katanin decorates and bends both ends of dynamic microtubules and potentiates the minus-end blocking activity of ASPM. ASPM also binds along microtubules, recruits katanin and promotes katanin-mediated severing of dynamic microtubules. We propose that the ASPM-katanin complex controls microtubule disassembly at spindle poles and that misregulation of this process can lead to microcephaly.


Assuntos
Adenosina Trifosfatases/metabolismo , Microcefalia/metabolismo , Microtúbulos/enzimologia , Proteínas do Tecido Nervoso/metabolismo , Polos do Fuso/enzimologia , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Sistemas CRISPR-Cas , Células HEK293 , Células HeLa , Humanos , Katanina , Microcefalia/genética , Microcefalia/patologia , Microtúbulos/genética , Microtúbulos/patologia , Modelos Moleculares , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Polos do Fuso/genética , Polos do Fuso/patologia , Relação Estrutura-Atividade , Fatores de Tempo , Transfecção
18.
Sci Rep ; 7: 43588, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28252640

RESUMO

A detailed molecular understanding of botulinum neurotoxin (BoNT)/host-cell-receptor interactions is fundamental both for developing strategies against botulism and for generating improved BoNT variants for medical applications. The X-ray crystal structure of the receptor-binding domain (HC) of BoNT/A1 in complex with the luminal domain (LD) of its neuronal receptor SV2C revealed only few specific side-chain - side-chain interactions that are important for binding. Notably, two BoNT/A1 residues, Arg 1156 and Arg 1294, that are crucial for the interaction with SV2, are not conserved among subtypes. Because it has been suggested that differential receptor binding of subtypes might explain their differences in biological activity, we determined the crystal structure of BoNT/A2-HC in complex with SV2C-LD. Although only few side-chain interactions are conserved between the two BoNT/A subtypes, the overall binding mode of subtypes A1 and A2 is virtually identical. In the BoNT/A2-HC - SV2C complex structure, a missing cation-π stacking is compensated for by an additional salt bridge and an anion-π stacking interaction, which explains why the binding of BoNT/A subtypes to SV2C tolerates variable side chains. These findings suggest that motif extensions and a shallow binding cleft in BoNT/A-HC contribute to binding specificity.


Assuntos
Toxinas Botulínicas Tipo A/química , Glicoproteínas de Membrana/química , Proteínas do Tecido Nervoso/química , Domínios e Motivos de Interação entre Proteínas , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Toxinas Botulínicas Tipo A/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica
19.
Biochemistry ; 56(11): 1604-1619, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28230348

RESUMO

To understand the roles ion pairs play in stabilizing coiled coils, we determined nuclear magnetic resonance structures of GCN4p at three pH values. At pH 6.6, all acidic residues are fully charged; at pH 4.4, they are half-charged, and at pH 1.5, they are protonated and uncharged. The α-helix monomer and coiled coil structures of GCN4p are largely conserved, except for a loosening of the coiled coil quaternary structure with a decrease in pH. Differences going from neutral to acidic pH include (i) an unwinding of the coiled coil superhelix caused by the loss of interchain ion pair contacts, (ii) a small increase in the separation of the monomers in the dimer, (iii) a loosening of the knobs-into-holes packing motifs, and (iv) an increased separation between oppositely charged residues that participate in ion pairs at neutral pH. Chemical shifts (HN, N, C', Cα, and Cß) of GCN4p display a seven-residue periodicity that is consistent with α-helical structure and is invariant with pH. By contrast, periodicity in hydrogen exchange rates at neutral pH is lost at acidic pH as the exchange mechanism moves into the EX1 regime. On the basis of 1H-15N nuclear Overhauser effect relaxation measurements, the α-helix monomers experience only small increases in picosecond to nanosecond backbone dynamics at acidic pH. By contrast, 13C rotating frame T1 relaxation (T1ρ) data evince an increase in picosecond to nanosecond side-chain dynamics at lower pH, particularly for residues that stabilize the coiled coil dimerization interface through ion pairs. The results on the structure and dynamics of GCNp4 over a range of pH values help rationalize why a single structure at neutral pH poorly predicts the pH dependence of the unfolding stability of the coiled coil.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/química , Simulação de Dinâmica Molecular , Fosfoproteínas/química , Prótons , Proteínas Recombinantes/química , Proteínas de Saccharomyces cerevisiae/química , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Dobramento de Proteína , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Eletricidade Estática , Termodinâmica
20.
Sci Rep ; 6: 30668, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27485312

RESUMO

Tight regulation of kinesin activity is crucial and malfunction is linked to neurological diseases. Point mutations in the KIF21A gene cause congenital fibrosis of the extraocular muscles type 1 (CFEOM1) by disrupting the autoinhibitory interaction between the motor domain and a regulatory region in the stalk. However, the molecular mechanism underlying the misregulation of KIF21A activity in CFEOM1 is not understood. Here, we show that the KIF21A regulatory domain containing all disease-associated substitutions in the stalk forms an intramolecular antiparallel coiled coil that inhibits the kinesin. CFEOM1 mutations lead to KIF21A hyperactivation by affecting either the structural integrity of the antiparallel coiled coil or the autoinhibitory binding interface, thereby reducing its affinity for the motor domain. Interaction of the KIF21A regulatory domain with the KIF21B motor domain and sequence similarities to KIF7 and KIF27 strongly suggest a conservation of this regulatory mechanism in other kinesin-4 family members.


Assuntos
Oftalmopatias Hereditárias/genética , Fibrose/genética , Cinesinas/antagonistas & inibidores , Cinesinas/genética , Transtornos da Motilidade Ocular/genética , Domínios Proteicos/genética , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Cristalografia por Raios X , Células HEK293 , Humanos , Cinesinas/metabolismo , Simulação de Acoplamento Molecular , Mutação/genética , Ligação Proteica/genética , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...