Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Biochem Nutr ; 60(1): 76-80, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28163386

RESUMO

Multiple free-radical scavenging (MULTIS) activity in cattle and human sera was evaluated with electron spin resonance spectroscopy. Scavenging rates against six active species, namely hydroxyl radical, superoxide anion, alkoxyl radical, alkylperoxyl radical, methyl radical, and singlet oxygen were quantified. The difference in the electron spin resonance signal intensity in the presence and absence of the serum was converted into the scavenging rates. Comparative MULTIS measurements were made in sera from eight beef cattle, three fetal calves and fifteen healthy human volunteers. Further, we determined the MULTIS value of albumin, the most abundant component in serum. MULTIS values in cattle sera indicated higher scavenging activity against most free radical species tested than human sera. In particular, cattle serum scavenging activities against superoxide and methyl radical were higher than human serum by 2.6 and 3.7 fold, respectively. In cattle serum, albumin appears to play a dominant role in MULTIS activity, but in human serum that is not the case. Previous data indicated that the abundance of uric acid in bovine blood is nearly 80% less than humans; however, this difference does not explain the deviation in MULTIS profile.

2.
J Clin Biochem Nutr ; 54(2): 67-74, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24688213

RESUMO

Scavenging rate constants of eight hydrophilic antioxidants, including caffeic acid, chlorogenic acid, genistein, glutathione, N-acetylcysteine, rutin, trolox, and uric acid against multiple ROS, namely superoxide anion, hydroxyl radical, singlet oxygen, and alkoxyl radical were determined with the electron spin resonance method. Direct flash photolysis measurement of the second-order rate constant in the reaction of alkoxyl radical plus the spin trap 5,5-dimethyl-pyrroline N-oxide made it possible to evaluate scavenging rate constants in antioxidants. The magnitudes of scavenging rate constants were notably dependent on the character of each ROS and the overall rate constants were highest in hydroxyl radical scavenging and the lowest in superoxide anion. The highest scavenging rate constant against superoxide anion was obtained by chlorogenic acid (2.9 × 10(5) M(-1) s(-1)) and the lowest was by N-acetylcysteine (5.0 × 10(2) M(-1) s(-1)). For singlet oxygen, the highest was by glutathione (9.4 × 10(8) M(-1) s(-1)) and the lowest was by uric acid (2.3 × 10(6) M(-1) s(-1)). All other numbers are listed and illustrated. Redox potential measurements of the antioxidants indicated that the antioxidants are likely to react with superoxide anion and singlet oxygen through electron transfer processes.

3.
Bioorg Med Chem Lett ; 24(5): 1376-9, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24507926

RESUMO

Edaravone (3-methyl-1-phenyl-2-pyrazoline-5-one) is a neuroprotective drug that has been used for brain ischemia injury treatment. Because its activity is speculated to be due to free radical scavenging activity, we carried out a quantitative determination of edaravone's free radical scavenging activity against multiple free radical species. Electron spin resonance (ESR) spin trapping-based multiple free-radical scavenging (MULTIS) method was employed, where target free radicals were hydroxyl radical, superoxide anion, alkoxyl radical, alkylperoxyl radical, methyl radical, and singlet oxygen. Edaravone showed relatively high scavenging abilities against hydroxyl radical (scavenging rate constant k=2.98×10(11) M(-1) s(-1)), singlet oxygen (k=2.75×10(7) M(-1) s(-1)), and methyl radical (k=3.00×10(7) M(-1) s(-1)). Overall, edaravone's scavenging activity against multiple free radical species is as robust as other known potent antioxidant such as uric acid, glutathione, and trolox. A radar chart illustration of the MULTIS activity relative to uric acid, glutathione, and trolox indicates that edaravone has a high and balanced antioxidant activity with low specificity.


Assuntos
Antipirina/análogos & derivados , Cromanos/química , Sequestradores de Radicais Livres/química , Glutationa/química , Fármacos Neuroprotetores/química , Ácido Úrico/química , Antipirina/química , Edaravone , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...