Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 10(7)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34356726

RESUMO

The goal of this research is to investigate the antimicrobial activity of nineteen previously synthesized 3,6-disubstituted-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole derivatives. The compounds were tested against a panel of three Gram-positive and three Gram-negative bacteria, three resistant strains, and six fungi. Minimal inhibitory, bactericidal, and fungicidal concentrations were determined by a microdilution method. All of the compounds showed antibacterial activity that was more potent than both reference drugs, ampicillin and streptomycin, against all bacteria tested. Similarly, they were also more active against resistant bacterial strains. The antifungal activity of the compounds was up to 80-fold higher than ketoconazole and from 3 to 40 times higher than bifonazole, both of which were used as reference drugs. The most active compounds (2, 3, 6, 7, and 19) were tested for their inhibition of P. aeruginosa biofilm formation. Among them, compound 3 showed significantly higher antibiofilm activity and appeared to be equipotent with ampicillin. The prediction of the probable mechanism by docking on antibacterial targets revealed that E. coli MurB is the most suitable enzyme, while docking studies on antifungal targets indicated a probable involvement of CYP51 in the mechanism of antifungal activity. Finally, the toxicity testing in human cells confirmed their low toxicity both in cancerous cell line MCF7 and non-cancerous cell line HK-2.

2.
Antibiotics (Basel) ; 9(5)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365907

RESUMO

We evaluated the antimicrobial activity of thirty-one nitrogen-containing 5-alpha-androstane derivatives in silico using computer program PASS (Prediction of Activity Spectra for Substances) and freely available PASS-based web applications (www.way2drug.com). Antibacterial activity was predicted for 27 out of 31 molecules; antifungal activity was predicted for 25 out of 31 compounds. The results of experiments, which we conducted to study the antimicrobial activity, are in agreement with the predictions. All compounds were found to be active with MIC (Minimum Inhibitory Concentration) and MBC (Minimum Bactericidal Concentration) values in the range of 0.0005-0.6 mg/mL. The activity of all studied 5-alpha-androstane derivatives exceeded or was equal to those of Streptomycin and, except for the 3ß-hydroxy-17α-aza-d-homo-5α-androstane-17-one, all molecules were more active than Ampicillin. Activity against the resistant strains of E. coli, P. aeruginosa, and methicillin-resistant Staphylococcus aureus was also shown in experiments. Antifungal activity was determined with MIC and MFC (Minimum Fungicidal Concentration) values varying from 0.007 to 0.6 mg/mL. Most of the compounds were found to be more potent than the reference drugs Bifonazole and Ketoconazole. According to the results of docking studies, the putative targets for antibacterial and antifungal activity are UDP-N-acetylenolpyruvoylglucosamine reductase and 14-alpha demethylase, respectively. In silico assessments of the acute rodent toxicity and cytotoxicity obtained using GUSAR (General Unrestricted Structure-Activity Relationships) and CLC-Pred (Cell Line Cytotoxicity Predictor) web-services were low for the majority of compounds under study, which contributes to the chances for those compounds to advance in the development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA