Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Food Prot ; 83(9): 1530-1539, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32338739

RESUMO

ABSTRACT: The presence of bacterial spores in cocoa powders is inevitable due to the cocoa bean fermentation process, during which members of the genera Bacillus and Geobacillus are typically present. Spores are a concern in heat-treated foods when they survive heat treatments and the finished product supports germination, growth, and potentially toxin production. In this study, available methods for the enumeration of total mesophilic and thermophilic spores (TMS and TTS, respectively) were evaluated, leading to the recommendation of one global method specifically for cocoa powders. The proposed method was validated during a ring test on seven selected cocoa powders and applied during routine analyses on commercial powders. The method includes dilution of cocoa powder using buffered peptone water, heating at 80°C for 10 min for TMS and TTS counts, and heating at 100°C for 30 min for a heat-resistant (HR) spore count. Tryptic soy agar is used as a recovery medium with a maximal concentration of cocoa powder of 2.5 mg/mL (to prevent growth inhibition) and a nonnutrient agar overlay to prevent swarming of bacteria. Plates are incubated for at least 72 h at 30°C for recovery of mesophilic bacteria and 55°C for thermophilic bacteria. Suitable alternatives to specific method parameters are provided. Median values of total spore concentrations are low (<400 CFU/g for TMS and <75 CFU/g for TTS), and concentrations of HR spores are very low (<5 CFU/g). Importantly, the relation between concentrations of HR spores in cocoa powder and incidence of spoilage of heat-treated beverages containing cocoa is currently unclear. In the powders included in this study, Bacillus subtilis and Bacillus licheniformis were the predominant spore-forming species identified (49 and 39%, respectively). Both species are known for high variability in spore heat resistance. The development of reliable and sensitive molecular methods is therefore required to assess the risk of spoilage caused by spores present in cocoa powders.


Assuntos
Bacillus , Esporos Bacterianos , Animais , Chocolate , Contagem de Colônia Microbiana , Temperatura Alta , Leite , Pós
2.
Appl Environ Microbiol ; 78(8): 2904-13, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22327588

RESUMO

We sampled a cocoa powder production line to investigate the impact of processing on the microbial community size and diversity at different stages. Classical microbiological methods were combined with 16S rRNA gene PCR-denaturing gradient gel electrophoresis, coupled with clone library construction, to analyze the samples. Aerobic thermoresistant spores (ThrS) (100°C; 10 min) were also isolated and characterized (identity, genetic diversity, and spore heat resistance), in view of their relevance to the quality of downstream heat-treated cocoa-flavored drinks. In the nibs (broken, shelled cocoa beans), average levels of total aerobic microorganisms (TAM) (4.4 to 5.6 log CFU/g) and aerobic total spores (TS) (80°C; 10 min; 4.3 to 5.5 log CFU/g) were significantly reduced (P < 0.05) as a result of alkalizing, while fungi (4.2 to 4.4 log CFU/g) and Enterobacteriaceae (1.7 to 2.8 log CFU/g) were inactivated to levels below the detection limit, remaining undetectable throughout processing. Roasting further decreased the levels of TAM and TS, but they increased slightly during subsequent processing. Molecular characterization of bacterial communities based on enriched cocoa samples revealed a predominance of members of the Bacillaceae, Pseudomonadaceae, and Enterococcaceae. Eleven species of ThrS were found, but Bacillus licheniformis and the Bacillus subtilis complex were prominent and revealed great genetic heterogeneity. We concluded that the microbiota of cocoa powder resulted from microorganisms that could have been initially present in the nibs, as well as microorganisms that originated during processing. B. subtilis complex members, particularly B. subtilis subsp. subtilis, formed the most heat-resistant spores. Their occurrence in cocoa powder needs to be considered to ensure the stability of derived products, such as ultrahigh-temperature-treated chocolate drinks.


Assuntos
Bactérias Aeróbias/classificação , Biodiversidade , Biota , Cacau/microbiologia , Manipulação de Alimentos , Microbiologia Industrial , Bactérias Aeróbias/genética , Bactérias Aeróbias/isolamento & purificação , Análise por Conglomerados , Contagem de Colônia Microbiana , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Eletroforese em Gel de Gradiente Desnaturante , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
3.
Food Microbiol ; 28(3): 573-82, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21356467

RESUMO

The microbiological criteria of commercial cocoa powder are defined in guidelines instituted by the cocoa industry. Twenty-five commercial samples were collected with the aim of assessing the compliance with the microbiological quality guidelines and investigating the occurrence and properties of aerobic Thermoresistant Spores (ThrS). Seventeen samples complied with the guidelines, but one was positive for Salmonella, five for Enterobacteriaceae and two had mould levels just exceeding the maximum admissible level. The treatment of the cocoa powder suspensions from 100 °C to 170 °C for 10 min, revealed the presence of ThrS in 36% of the samples. In total 61 ThrS strains were isolated, of which the majority belonged to the Bacillus subtilis complex (65.6%). Strains resporulation and spore crops inactivation at 110 °C for 5 min showed a wide diversity of heat-resistance capacities. Amplified fragment length polymorphism analysis revealed not only a large intraspecies diversity, but also different clusters of heat-resistant spore-forming strains. The heat-resistance of spores of six B. subtilis complex strains was further examined by determination of their D and z-values. We concluded that B. subtilis complex spores, in particular those from strain M112, were the most heat-resistant and these may survive subsequent preservation treatments, being potentially problematic in food products, such as chocolate milk.


Assuntos
Cacau/microbiologia , DNA Bacteriano/análise , Manipulação de Alimentos/métodos , Temperatura Alta , Esporos Bacterianos/crescimento & desenvolvimento , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Qualidade de Produtos para o Consumidor , Microbiologia de Alimentos , Polimorfismo de Fragmento de Restrição , Salmonella/genética , Salmonella/crescimento & desenvolvimento , Especificidade da Espécie , Esporos Bacterianos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA