Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Brain Sci ; 14(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38391701

RESUMO

MR perfusion imaging is important in the clinical evaluation of primary brain tumors, particularly in differentiating between true progression and treatment-induced change. The utility of velocity-selective ASL (VSASL) compared to the more commonly utilized DSC perfusion technique was assessed in routine clinical surveillance MR exams of 28 patients with high-grade gliomas at 1.5T. Using RANO criteria, patients were assigned to two groups, one with detectable residual/recurrent tumor ("RT", n = 9), and the other with no detectable residual/recurrent tumor ("NRT", n = 19). An ROI was drawn to encompass the largest dimension of the lesion with measures normalized against normal gray matter to yield rCBF and tSNR from VSASL, as well as rCBF and leakage-corrected relative CBV (lc-rCBV) from DSC. VSASL (rCBF and tSNR) and DSC (rCBF and lc-rCBV) metrics were significantly higher in the RT group than the NRT group allowing adequate discrimination (p < 0.05, Mann-Whitney test). Lin's concordance analyses showed moderate to excellent concordance between the two methods, with a stronger, moderate correlation between VSASL rCBF and DSC lc-rCBV (r = 0.57, p = 0.002; Pearson's correlation). These results suggest that VSASL is clinically feasible at 1.5T and has the potential to offer a noninvasive alternative to DSC perfusion in monitoring high-grade gliomas following therapy.

2.
Cancers (Basel) ; 15(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686587

RESUMO

PURPOSE: To investigate the use of 3D downfield proton magnetic resonance spectroscopic imaging (DF-MRSI) for evaluation of tumor recurrence in patients with glioblastoma (GBM). METHODS: Seven patients (4F, age range 44-65 and mean ± standard deviation 59.3 ± 7.5 years) with previously treated GBM were scanned using a recently developed 3D DF-MRSI sequence at 3T. Short TE 3D DF-MRSI and water reference 3D-MRSI scans were collected with a nominal spatial resolution of 0.7 cm3. DF volume data in eight slices covered 12 cm of brain in the cranio-caudal axis. Data were analyzed using the 'LCModel' program and a basis set containing nine peaks ranging in frequency between 6.83 to 8.49 ppm. The DF8.18 (assigned to amides) and DF7.90 peaks were selected for the creation of metabolic images and statistical analysis. Longitudinal MR images and clinical history were used to classify brain lesions as either recurrent tumor or treatment effect, which may include necrosis. DF-MRSI data were compared between lesion groups (recurrent tumor, treatment effect) and normal-appearing brain. RESULTS: Of the seven brain tumor patients, two were classified as having recurrent tumor and the rest were classified as treatment effect. Amide metabolite levels from recurrent tumor regions were significantly (p < 0.05) higher compared to both normal-appearing brain and treatment effect regions. Amide levels in lesion voxels classified as treatment effect were significantly lower than normal brain. CONCLUSIONS: 3D DF-MRSI in human brain tumors at 3T is feasible and was well tolerated by all patients enrolled in this preliminary study. Amide levels measured by 3D DF-MRSI were significantly different between treatment effect and tumor regrowth.

3.
Neurosurg Focus ; 55(2): E3, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37527669

RESUMO

OBJECTIVE: Brain metastases (BMs) are the most common CNS tumors, yet their prevalence is difficult to determine. Most studies only report synchronous metastases, which make up a fraction of all BMs. The authors report the incidence and prognosis of patients with synchronous and metachronous BMs over a decade. METHODS: Study data were obtained from the TriNetX Research Network. Patients were included if they had a primary cancer diagnosis and a BM diagnosis, with primary cancer occurring between January 1, 2013, and January 1, 2023. Metachronous BM was defined as BM diagnosed more than 2 months after the primary cancer. Cohorts were balanced by propensity score matching for age, extracranial metastasis, and antineoplastic or radiation therapy. Kaplan-Meier plots were used to evaluate survival differences between synchronous and metachronous BMs and associations with clinical conditions. A log-rank test was used to evaluate BM-free survival for metachronous BM and overall survival (OS) for all BMs. Hazard ratios and 95% CIs were calculated. RESULTS: Of the 11,497,663 patients with 15 primary cancers identified, 300,863 (2.6%) developed BMs. BMs most commonly arose from lung and breast cancers and melanoma. Of all BMs, 113,827 (37.8%) presented synchronously and 187,036 (62.2%) presented metachronously. Lung and bronchial cancer had the highest metastasis rate (11.0%) and the highest synchronous presentation (51.0%). For metachronous presentations, the time from primary diagnosis to metastasis ranged from 1.3 to 2.5 years, averaging 1.8 years. Metachronous BM diagnosis was associated with longer survival over synchronous BM from primary diagnosis (11.54 vs 37.41 months, p < 0.0001), but shorter survival than extracranial metastases without BM (38.75 vs 69.18 months, p < 0.0001). Antineoplastic therapy prior to BM was associated with improved BM-free survival (4.46 vs 17.80 months, p < 0.0001) and OS (25.15 vs 42.26 months, p < 0.0001). Radiotherapy showed a similar effect that was statistically significant but modest for BM-free survival (5.25 vs 11.44 months, p < 0.0001) and OS (30.13 vs 32.82 months, p < 0.0001). CONCLUSIONS: The majority of BMs present metachronously and arise within 2 years of primary cancer diagnosis. The substantial rate of BMs presenting within 6 months of primary cancer, especially liver, lung, and pancreatic cancer, may guide future recommendations on intracranial staging. Antineoplastic therapy prior to the development of BM may prolong the time before metastasis and improve survival. Further characterization of this population can better inform screening, prevention, and treatment efforts.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Humanos , Estudos Retrospectivos , Prognóstico , Modelos de Riscos Proporcionais , Neoplasias Encefálicas/epidemiologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia
4.
Curr Oncol Rep ; 25(9): 1057-1069, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37470973

RESUMO

PURPOSE OF REVIEW: The neuro-oncology team faces a unique challenge when assessing treatment response in patients diagnosed with glioblastoma. Magnetic resonance imaging (MRI) remains the standard imaging modality for measuring therapeutic response in both clinical practice and clinical trials. However, even for the neuroradiologist, MRI interpretations are not straightforward because of tumor heterogeneity, as evidenced by varying degrees of enhancement, infiltrating tumor patterns, cellular densities, and vasogenic edema. The situation is even more perplexing following therapy since treatment-related changes can mimic viable tumor. Additionally, antiangiogenic therapies can dramatically decrease contrast enhancement giving the false impression of decreasing tumor burden. Over the past few decades, several approaches have emerged to augment and improve visual interpretation of glioblastoma response to therapeutics. Herein, we summarize the state of the art for evaluating the response of glioblastoma to standard therapies and investigational agents as well as challenges and future directions for assessing treatment response in neuro-oncology. RECENT FINDINGS: Monitoring glioblastoma responses to standard therapy and novel agents has been fraught with many challenges and limitations over the past decade. Excitingly, new promising methods are emerging to help address these challenges. Recently, the Response Assessment in Neuro-Oncology (RANO) working group proposed an updated response criteria (RANO 2.0) for the evaluation of all grades of glial tumors regardless of IDH status or therapies being evaluated. In addition, advanced neuroimaging techniques, such as histogram analysis, parametric response maps, morphometric segmentation, radio pharmacodynamics approaches, and the integrating of amino acid radiotracers in the tumor evaluation algorithm may help resolve equivocal lesion interpretations without operative intervention. Moreover, the introduction of other techniques, such as liquid biopsy and artificial intelligence could complement conventional visual assessment of glioblastoma response to therapies. Neuro-oncology has evolved over the past decade and has achieved significant milestones, including the establishment of new standards of care, emerging therapeutic options, and novel clinical, translational, and basic research. More recently, the integration of histopathology with molecular features for tumor classification has marked an important paradigm shift in brain tumor diagnosis. In a similar manner, treatment response monitoring in neuro-oncology has made considerable progress. While most techniques are still in their inception, there is an emerging body of evidence for clinical application. Further research will be critically important for the development of impactful breakthroughs in this area of the field.

5.
Front Oncol ; 13: 1077461, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007074

RESUMO

The adverse effects of lactic acidosis in the cancer microenvironment have been increasingly recognized. Dichloroacetate (DCA) is an orally bioavailable, blood brain barrier penetrable drug that has been extensively studied in the treatment of mitochondrial neurologic conditions to reduce lactate production. Due to its effect reversing aerobic glycolysis (i.e., Warburg-effect) and thus lactic acidosis, DCA became a drug of interest in cancer as well. Magnetic resonance spectroscopy (MRS) is a well-established, non-invasive technique that allows detection of prominent metabolic changes, such as shifts in lactate or glutamate levels. Thus, MRS is a potential radiographic biomarker to allow spatial and temporal mapping of DCA treatment. In this systematic literature review, we gathered the available evidence on the use of various MRS techniques to track metabolic changes after DCA administration in neurologic and oncologic disorders. We included in vitro, animal, and human studies. Evidence confirms that DCA has substantial effects on lactate and glutamate levels in neurologic and oncologic disease, which are detectable by both experimental and routine clinical MRS approaches. Data from mitochondrial diseases show slower lactate changes in the central nervous system (CNS) that correlate better with clinical function compared to blood. This difference is most striking in focal impairments of lactate metabolism suggesting that MRS might provide data not captured by solely monitoring blood. In summary, our findings corroborate the feasibility of MRS as a pharmacokinetic/pharmacodynamic biomarker of DCA delivery in the CNS, that is ready to be integrated into currently ongoing and future human clinical trials using DCA.

6.
Neurooncol Adv ; 5(1): vdad015, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968289

RESUMO

Background: Brain metastases (BM) constitute a significant cause of oncological mortality. Statistics on the incidence of BM are limited because of the lack of systematic nationwide reporting. We report the incidence of synchronous brain metastases (sBM), defined as BM identified at the time of primary cancer diagnosis from 2015 to 2019 using National Cancer Institute's (NCI's) Surveillance, Epidemiology, and End Results Program database. Methods: We identified 1,872,057 patients with malignancies diagnosed between 2015 and 2019 from the SEER 17 Registries database, including 35,986 (1.9%) patients with sBM. Age-adjusted incidence rates were examined using the NCI Joinpoint software. Kaplan-Meier curves and a multivariate Cox regression model were used to investigate survival. Results: The incidence rate of sBM from 2015 to 2019 was 7.1 persons per 100,000. Lung and bronchus cancers had the highest incidence of sBM (5.18 to 5.64 per 100,000), followed by melanoma (0.30 to 0.34 per 100,000) and breast cancers (0.24 to 0.30 per 100,000). In children, renal tumors had the highest sBM incidence. sBM were associated with poorer survival than extracranial metastases only (hazard ratio [HR]: 1.40 [95% CI: 1.39-1.42], P < .001). We observed better survival in white patients relative to nonwhite patients with sBM (HR: 0.91 [95% CI: 0.90-0.94], P < .001). Conclusions: The incidence rate of sBM has remained similar to rates reported over the last 9 years, with the majority associated with primary lung and bronchus cancers. sBM represent a national healthcare burden with tremendous mortality in pediatric and adult populations. This population may benefit from improved screening and treatment strategies.

7.
Pharmaceutics ; 14(11)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36432721

RESUMO

PURPOSE: Mannitol is a hyperosmolar agent for reducing intracranial pressure and inducing osmotic blood-brain barrier opening (OBBBO). There is a great clinical need for a non-invasive method to optimize the safety of mannitol dosing. The aim of this study was to develop a label-free Chemical Exchange Saturation Transfer (CEST)-based MRI approach for detecting intracranial accumulation of mannitol following OBBBO. METHODS: In vitro MRI was conducted to measure the CEST properties of D-mannitol of different concentrations and pH. In vivo MRI and MRS measurements were conducted on Sprague-Dawley rats using a Biospec 11.7T horizontal MRI scanner. Rats were catheterized at the internal carotid artery (ICA) and randomly grouped to receive either 1 mL or 3 mL D-mannitol. CEST MR images were acquired before and at 20 min after the infusion. RESULTS: In vitro MRI showed that mannitol has a strong, broad CEST contrast at around 0.8 ppm with a mM CEST MRI detectability. In vivo studies showed that CEST MRI could effectively detect mannitol in the brain. The low dose mannitol treatment led to OBBBO but no significant mannitol accumulation, whereas the high dose regimen resulted in both OBBBO and mannitol accumulation. The CEST MRI findings were consistent with 1H-MRS and Gd-enhanced MRI assessments. CONCLUSION: We demonstrated that CEST MRI can be used for non-invasive, label-free detection of mannitol accumulation in the brain following BBBO treatment. This method may be useful as a rapid imaging tool to optimize the dosing of mannitol-based OBBBO and improve its safety and efficacy.

8.
NMR Biomed ; 35(3): e4649, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34779550

RESUMO

Natural and synthetic sugars have great potential for developing highly biocompatible and translatable chemical exchange saturation transfer (CEST) MRI contrast agents. In this study, we aimed to develop the smallest clinically available form of dextran, Dex1 (molecular weight, MW ~ 1 kDa), as a new CEST agent. We first characterized the CEST properties of Dex1 in vitro at 11.7 T and showed that the Dex1 had a detectable CEST signal at ~1.2 ppm, attributed to hydroxyl protons. In vivo CEST MRI studies were then carried out on C57BL6 mice bearing orthotopic GL261 brain tumors (n = 5) using a Bruker BioSpec 11.7 T MRI scanner. Both steady-state full Z-spectral images and single offset (1.2 ppm) dynamic dextran-enhanced (DDE) images were acquired before and after the intravenous injection of Dex1 (2 g/kg). The steady-state Z-spectral analysis showed a significantly higher CEST contrast enhancement in the tumor than in contralateral brain (∆MTRasym1.2 ppm  = 0.010 ± 0.006 versus 0.002 ± 0.008, P = 0.0069) at 20 min after the injection of Dex1. Pharmacokinetic analyses of DDE were performed using the area under the curve (AUC) in the first 10 min after Dex1 injection, revealing a significantly higher uptake of Dex1 in the tumor than in brain tissue for tumor-bearing mice (AUC[0-10 min] = 21.9 ± 4.2 versus 5.3 ± 6.4%·min, P = 0.0294). In contrast, no Dex1 uptake was foundling in the brains of non-tumor-bearing mice (AUC[0-10 min] = -1.59 ± 2.43%·min). Importantly, the CEST MRI findings were consistent with the measurements obtained using DCE MRI and fluorescence microscopy, demonstrating the potential of Dex1 as a highly translatable CEST MRI contrast agent for assessing tumor hemodynamics.


Assuntos
Meios de Contraste , Aumento da Imagem , Imageamento por Ressonância Magnética/métodos , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Dextranos , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência
10.
Pain Manag ; 10(3): 141-145, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32394815

RESUMO

Aim: Déjerine-Roussy syndrome or central thalamic pain can be devastating, and treatment with drugs and even deep brain stimulation can be unsatisfactory. Scrambler therapy is a form of neuromodulation that uses external skin electrodes to send a 'non-pain' signal to the brain, with some success in difficult-to-treat syndromes such as neuromyelitis optica spectrum disorder. We used scrambler therapy to treat a patient with 6 years of disabling Déjerine-Roussy syndrome pain. Methods: A 56-year-old man received multiple daily then monthly treatments with electrode pairs placed just above the area of distal pain. Each treatment was for 40 min. Results: His allodynia and hyperalgesia resolved within 10 min, and his pain score fell to almost zero after 30 min. Months later, he resumed normal activity and is off all his pain medications. No side effects were noted. Conclusion: Scrambler therapy appeared to reverse 6 years of disabling pain safely and economically, and continues to be effective. Further multi-institutional trials are warranted for this rare syndrome.


Assuntos
Terapia por Estimulação Elétrica , Hiperalgesia/terapia , Neuralgia/terapia , Doenças Talâmicas/terapia , Terapia por Estimulação Elétrica/métodos , Humanos , Hiperalgesia/etiologia , Masculino , Pessoa de Meia-Idade , Neuralgia/etiologia , Doenças Talâmicas/complicações
11.
Neuroradiol J ; 31(4): 415-419, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29513076

RESUMO

N-methyl-D-aspartate receptor encephalitis (NMDARe) is one of 13 autoimmune-mediated encephalitides that have been discovered over the last decade. This case report describes the course of a 26-year-old female who presented with new-onset seizures and insomnia, complicated by encephalitis. The initial workup ruled out common causes of encephalitis, while a transvaginal ultrasound (TVUS), and computed tomography (CT) scans of the chest, abdomen, and pelvis did not identify a mass. Based on the suspicion that she may have autoimmune encephalitis, the patient was treated with intravenous immunoglobulins and plasma exchange, but continued to deteriorate. Whole-body positron emission tomography (PET) scan identified a small hypermetabolic pelvic mass. Shortly thereafter serum and cerebral spinal fluid NMDAR antibody titers were reported as positive, prompting repetition of the TVUS, which confirmed the presence of an ovarian teratoma. The patient had a laparoscopic oophorectomy with subsequent resolution of her symptoms, further confirming the diagnosis. Despite the sensitivities of TVUS and CT of up to 94% and 98%, respectively, the teratoma was unusually small, necessitating the addition of a PET scan to identify the lesion. These neoplasms are thought to have low uptake on PET; however, it is possible that focal inflammation may have enhanced the detection. It is unlikely that the teratoma grew during hospitalization as the average growth rate is 1.8 mm per year. Regardless, the lesson that can be learned is that imaging modalities beyond CT and TVUS, such as PET, can be helpful, as identification of a resectable tumor may alter management and ultimately improve outcomes.


Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato/complicações , Encefalite Antirreceptor de N-Metil-D-Aspartato/diagnóstico , Encéfalo/diagnóstico por imagem , Neoplasias Ovarianas/complicações , Neoplasias Ovarianas/diagnóstico , Ovário/diagnóstico por imagem , Teratoma/complicações , Teratoma/diagnóstico , Adulto , Encefalite Antirreceptor de N-Metil-D-Aspartato/terapia , Diagnóstico Diferencial , Feminino , Humanos , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/terapia , Ovário/patologia , Transtornos Psicóticos/diagnóstico , Transtornos Psicóticos/etiologia , Transtornos Psicóticos/terapia , Convulsões/diagnóstico , Convulsões/etiologia , Convulsões/terapia , Teratoma/patologia , Teratoma/terapia
12.
Neurologist ; 23(2): 53-54, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29494436

RESUMO

The diagnosis of primary central nervous system lymphoma (PCNSL) may be fraught with difficulty. After initial imaging reveals enhancing intracranial mass lesions steroids are often initiated. This leads to a decreased diagnostic yield of tumor biopsies which may be associated with delay in treatment initiation. We review a case of PCNSL treated with a very brief steroid course. Initial nondiagnostic biopsy histopathology is juxtaposed against subsequent diagnostic pathology. Imaging before and after steroids is presented, as is imaging after tumor regrowth in a noncontiguous location. Elements in the clinical history and radiographic presentation which should raise suspicion for PCNSL are reviewed. Increased understanding of the potential pitfalls surrounding PCNSL diagnosis may limit their future occurrence.


Assuntos
Neoplasias do Sistema Nervoso Central/diagnóstico , Linfoma/diagnóstico , Neoplasias do Sistema Nervoso Central/diagnóstico por imagem , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Neoplasias do Sistema Nervoso Central/patologia , Feminino , Humanos , Linfoma/diagnóstico por imagem , Linfoma/tratamento farmacológico , Linfoma/patologia , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Esteroides/uso terapêutico
13.
Oncotarget ; 8(41): 71223-71233, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-29050358

RESUMO

BACKGROUND: Small cell lung cancer (SCLC) frequently leads to development of brain metastases. These unfortunately continue to be associated with short survival. Substantial advances have been made in our understanding of the underlying biology of disease. This understanding on the background of previously evaluated and currently utilized therapeutic treatments can help guide the next steps in investigations into this disease with the potential to influence future treatments. DESIGN: A comprehensive review of the literature covering epidemiology, pathophysiology, imaging characteristics, prognosis, and therapeutic management of SCLC brain metastases was performed. RESULTS: SCLC brain metastases continue to have a poor prognosis. Both unique aspects of SCLC brain metastases as well as features seen more universally across other solid tumor brain metastases are discussed. Systemic therapeutic studies and radiotherapeutic approaches are reviewed. CONCLUSIONS: A clearer understanding of SCLC brain metastases will help lay the framework for studies which will hopefully translate into meaningful therapeutic options for these patients.

14.
Clin Nucl Med ; 42(5): 341-347, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28195901

RESUMO

PURPOSE: Several molecular glioma markers (including isocitrate dehydrogenase 1 [IDH1] mutation, amplification of the epidermal growth factor receptor [EGFR], and methylation of the O6-methylguanine-DNA methyltransferase [MGMT] promoter) have been associated with glioblastoma survival. In this study, we examined the association between tumoral amino acid uptake, molecular markers, and overall survival in patients with IDH1 wild-type (primary) glioblastoma. PATIENTS AND METHODS: Twenty-one patients with newly diagnosed IDH1 wild-type glioblastomas underwent presurgical MRI and PET scanning with alpha[C-11]-L-methyl-tryptophan (AMT). MRI characteristics (T2- and T1-contrast volume), tumoral tryptophan uptake, PET-based metabolic tumor volume, and kinetic variables were correlated with prognostic molecular markers (EGFR and MGMT) and overall survival. RESULTS: EGFR amplification was associated with lower T1-contrast volume (P = 0.04) as well as lower T1-contrast/T2 volume (P = 0.04) and T1-contrast/PET volume ratios (P = 0.02). Tumors with MGMT promoter methylation showed lower metabolic volume (P = 0.045) and lower tumor/cortex AMT unidirectional uptake ratios than those with unmethylated MGMT promoter (P = 0.009). While neither EGFR amplification nor MGMT promoter methylation was significantly associated with survival, high AMT tumor/cortex uptake ratios on PET were strongly prognostic for longer survival (hazards ratio, 30; P = 0.002). Estimated mean overall survival was 26 months in patients with high versus 8 months in those with low tumoral AMT uptake ratios. CONCLUSIONS: The results demonstrate specific MRI and amino acid PET imaging characteristics associated with EGFR amplification and MGMT promoter methylation in patients with primary glioblastoma. High tryptophan uptake on PET may identify a subgroup with prolonged survival.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias do Sistema Nervoso Central/diagnóstico por imagem , Glioblastoma/diagnóstico por imagem , Regiões Promotoras Genéticas/fisiologia , Triptofano/metabolismo , Idoso , Radioisótopos de Carbono/metabolismo , Neoplasias do Sistema Nervoso Central/metabolismo , Metilação de DNA , Receptores ErbB/metabolismo , Feminino , Glioblastoma/metabolismo , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mutação , Tomografia por Emissão de Pósitrons , Prognóstico , Triptofano/análogos & derivados
15.
J Neurol Sci ; 368: 97-103, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27538609

RESUMO

PURPOSE: We evaluated if cortical thickness measures were associated with surgical outcome in patients with non-lesional neocortical epilepsy. METHODS: Twenty-one young patients (age: 2.4-19.7years) with epilepsy of neocortical origin and normal MRI underwent two-stage epilepsy surgery with subdural EEG monitoring. Cortical thickness was measured on presurgical volumetric MRI using the FreeSurfer software. The prognostic value of hemispheric and lobar/regional cortical thickness measures for 1-year and 2-year post-surgical seizure outcome has been analyzed. RESULTS: At one-year follow-up, 14 patients (67%) were seizure-free. Hemispheric and frontal lobe cortical thickness showed no/minimal asymmetry in seizure-free patients but thinner cortex ipsilateral to the seizure focus in those with recurrent seizures (p=0.02). More robust differences were found in patients≥6years of age (p=0.006 for frontal asymmetries), whose cortical thickness asymmetries remained prognostic for 2-year post-surgical outcome (p=0.007). By using an optimal cutoff threshold based on a receiver operating characteristic analysis, mean hemispheric asymmetry predicted one-year seizure freedom with 93% sensitivity and 71% specificity in the whole group, and with 100% sensitivity and 92% specificity in patients≥6years of age. CONCLUSION: In patients with neocortical epilepsy and normal MRI, neocortical thinning in the epileptic hemisphere, particularly in frontal cortex, is associated with poor surgical outcome. Although these results require validation in a larger cohort prospectively, these data suggest that presurgical evaluation of cortical thickness may assist in identification of patients at high risk for surgical failure.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/cirurgia , Epilepsia/diagnóstico por imagem , Epilepsia/cirurgia , Adolescente , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/fisiopatologia , Criança , Pré-Escolar , Eletrocorticografia , Epilepsia/fisiopatologia , Feminino , Seguimentos , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Tamanho do Órgão , Prognóstico , Curva ROC , Resultado do Tratamento , Adulto Jovem
16.
J Neurooncol ; 126(2): 317-25, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26514361

RESUMO

Amino acid PET is increasingly utilized for the detection of recurrent gliomas. Increased amino acid uptake is often observed outside the contrast-enhancing brain tumor mass. In this study, we evaluated if non-enhancing PET+ regions could predict spatial and temporal patterns of subsequent MRI progression in previously treated glioblastomas. Twelve patients with a contrast-enhancing area suspicious for glioblastoma recurrence on MRI underwent PET scanning with the amino acid radiotracer alpha-[(11)C]-methyl-L-tryptophan (AMT). Brain regions showing increased AMT uptake in and outside the contrast-enhancing volume were objectively delineated to include high uptake consistent with glioma (as defined by previous studies). Volume and tracer uptake of such non-enhancing PET+ regions were compared to spatial patterns and timing of subsequent progression of the contrast-enhancing lesion, as defined by serial surveillance MRI. Non-enhancing PET+ volumes varied widely across patients and extended up to 24 mm from the edge of MRI contrast enhancement. In ten patients with clear progression of the contrast-enhancing lesion, the non-enhancing PET+ volumes predicted the location of new enhancement, which extended beyond the PET+ brain tissue in six. In two patients, with no PET+ area beyond the initial contrast enhancement, MRI remained stable. There was a negative correlation between AMT uptake in non-enhancing brain and time to subsequent progression (r = -0.77, p = 0.003). Amino acid PET imaging could complement MRI not only for detecting glioma recurrence but also predicting the location and timing of subsequent tumor progression. This could support decisions for surgical intervention or other targeted therapies for recurrent gliomas.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Progressão da Doença , Glioblastoma/metabolismo , Glioblastoma/patologia , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Triptofano/metabolismo , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Meios de Contraste , Feminino , Glioblastoma/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Imagem Multimodal
17.
EJNMMI Res ; 5(1): 56, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26475140

RESUMO

BACKGROUND: Depression in patients with brain tumors is associated with impaired quality of life and shorter survival. Altered metabolism of tryptophan to serotonin and kynurenine metabolites may play a role in tumor-associated depression. Our recent studies with alpha[(11)C]methyl-L-tryptophan (AMT)-PET in brain tumor patients indicated abnormal tryptophan metabolism not only in the tumor mass but also in normal-appearing contralateral brain. In the present study, we explored if tryptophan metabolism in such brain regions is associated with depression. METHODS: Twenty-one patients (mean age: 57 years) with a brain tumor (10 meningiomas, 8 gliomas, and 3 brain metastases) underwent AMT-PET scanning. MRI and AMT-PET images were co-registered, and AMT kinetic parameters, including volume of distribution (VD', an estimate of net tryptophan transport) and K (unidirectional uptake, related to tryptophan metabolism), were measured in the tumor mass and in unaffected cortical and subcortical regions contralateral to the tumor. Depression scores (based on the Beck Depression Inventory-II [BDI-II]) were correlated with tumor size, grade, type, and AMT-PET variables. RESULTS: The mean BDI-II score was 12 ± 10 (range: 2-33); clinical levels of depression were identified in seven patients (33 %). High BDI-II scores were most strongly associated with high thalamic AMT K values both in the whole group (Spearman's rho = 0.63, p = 0.004) and in the subgroup of 18 primary brain tumors (r = 0.68, p = 0.004). Frontal and striatal VD' values were higher in the depressed subgroup than in non-depressed patients (p < 0.05); the group difference was even more robust when moderately/severely depressed patients were compared to patients with no/mild depression (frontal: p = 0.005; striatal: p < 0.001). Tumor size, grade, and tumor type were not related to depression scores. CONCLUSIONS: Abnormalities of tryptophan transport and metabolism in the thalamus, striatum, and frontal cortex, measured by PET, are associated with depression in patients with brain tumor. These changes may indicate an imbalance between the serotonin and kynurenine pathways and serve as a molecular imaging marker of brain tumor-associated depression. TRIAL REGISTRATION: ClinicalTrials.gov NCT02367469.

18.
Cancer Imaging ; 15: 10, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26245742

RESUMO

BACKGROUND: To assess gliomas using image-based estimation of cellularity, we utilized isotropic diffusion spectrum imaging (IDSI) on clinically feasible diffusion tensor imaging (DTI) and compared it with amino acid uptake measured by α[(11)C]methyl-L-tryptophan positron emission tomography (AMT-PET). METHODS: In 10 patients with a newly-diagnosed glioma, metabolically active tumor regions were defined in both FLAIR hyperintense areas and based on increased uptake on AMT-PET. A recently developed independent component analysis with a ball and stick model was extended to perform IDSI in clinical DTI data. In tumor regions, IDSI was used to define tumor cellularity which was compared between low and high grade glioma and correlated with the glioma proliferative index. RESULTS: The IDSI-derived cellularity values were elevated in both FLAIR and AMT-PET-derived regions of high-grade gliomas. ROC curve analysis found that the IDSI-derived cellularity can provide good differentiation of low-grade from high-grade gliomas (accuracy/sensitivity/specificity of 0.80/0.80/0.80). . Both apparent diffusion coefficient (ADC) and IDSI-derived cellularity showed a significant correlation with the glioma proliferative index (based on Ki-67 labeling; R = 0.95, p < 0.001), which was particularly strong when the tumor regions were confined to areas with high tryptophan uptake excluding areas with peritumoral edema. CONCLUSION: IDSI-MRI combined with AMT-PET may provide a multi-modal imaging tool to enhance pretreatment assessment of human gliomas by evaluating tumor cellularity and differentiate low-grade form high-grade gliomas.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Imagem de Tensor de Difusão , Glioma/metabolismo , Glioma/patologia , Tomografia por Emissão de Pósitrons , Adolescente , Adulto , Idoso , Celulase , Feminino , Humanos , Imuno-Histoquímica , Masculino , Curva ROC , Triptofano
19.
Neuro Oncol ; 17(9): 1284-92, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26092774

RESUMO

BACKGROUND: Increased tryptophan metabolism via the kynurenine pathway (KP) is a key mechanism of tumoral immune suppression in gliomas. However, details of tryptophan metabolism in meningiomas have not been elucidated. In this study, we evaluated in vivo tryptophan metabolism in meningiomas and compared it with gliomas using α-[(11)C]-methyl-L-tryptophan (AMT)-PET. We also explored expression patterns of KP enzymes in resected meningiomas. METHODS: Forty-seven patients with MRI-detected meningioma (n = 16) and glioma (n = 31) underwent presurgical AMT-PET scanning. Tumoral AMT uptake and tracer kinetic parameters (including K and k3' evaluating unidirectional uptake and trapping, respectively) were measured, correlated with meningioma grade, and compared between meningiomas and gliomas. Patterns of KP enzyme expression were assessed by immunohistochemistry in all meningiomas. RESULTS: Meningioma grade showed a positive correlation with AMT k3' tumor/cortex ratio (r = 0.75, P = .003), and this PET parameter distinguished grade I from grade II/III meningiomas with 92% accuracy. Kinetic AMT parameters could differentiate meningiomas from both low-grade gliomas (97% accuracy by k3' ratios) and high-grade gliomas (83% accuracy by K ratios). Among 3 initial KP enzymes (indoleamine 2,3-dioxygenase 1/2, and tryptophan 2,3-dioxygenase 2 [TDO2]), TDO2 showed the strongest immunostaining, particularly in grade I meningiomas. TDO2 also showed a strong negative correlation with AMT k3' ratios (P = .001). CONCLUSIONS: PET imaging of tryptophan metabolism can provide quantitative imaging markers for differentiating grade I from grade II/III meningiomas. TDO2 may be an important driver of in vivo tryptophan metabolism in these tumors. These results can have implications for pharmacological targeting of the KP in meningiomas.


Assuntos
Cinurenina/metabolismo , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/patologia , Meningioma/metabolismo , Meningioma/patologia , Triptofano/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/metabolismo , Encéfalo/patologia , Criança , Feminino , Glioma/diagnóstico por imagem , Glioma/metabolismo , Glioma/patologia , Humanos , Masculino , Neoplasias Meníngeas/diagnóstico por imagem , Meningioma/diagnóstico por imagem , Pessoa de Meia-Idade , Gradação de Tumores , Tomografia por Emissão de Pósitrons , Transdução de Sinais , Triptofano/análogos & derivados , Adulto Jovem
20.
Magn Reson Imaging ; 33(7): 895-902, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25959649

RESUMO

PURPOSE: To examine whether an objective segmenation of corticospinal tract (CST) associated with hand and leg movements can be used to detect central motor weakness in the corresponding extremities in a pediatric population. MATERIAL AND METHODS: This retrospective study included diffusion tensor imaging (DTI) of 25 children with central paresis affecting at least one limb (age: 9.0±4.2years, 15 boys, 5/13/7 children with left/right/both hemispheric lesions including ischemia, cyst, and gliosis), as well as 42 pediatric control subjects with no motor dysfunction (age: 9.0±5.5years, 21 boys, 31 healthy/11 non-lesional epilepsy children). Leg- and hand-related CST pathways were segmented using DTI-maximum a posteriori (DTI-MAP) classification. The resulting CST volumes were then divided by total supratentorial white matter volume, resulting in a marker called "normalized streamline volume ratio (NSVR)" to quantify the degree of axonal loss in separate CST pathways associated with leg and hand motor functions. A receiver operating characteristic curve was applied to measure the accuracy of this marker to identify extremities with motor weakness. RESULTS: NSVR values of hand/leg CST selectively achieved the following values of accuracy/sensitivity/specificity: 0.84/0.84/0.57, 0.82/0.81/0.55, 0.78/0.75/0.55, 0.79/0.81/0.54 at a cut-off of 0.03/0.03/0.03/0.02 for right hand CST, left hand CST, right leg CST, and left leg CST, respectively. Motor weakness of hand and leg was most likely present at the cut-off values of hand and leg NSVR (i.e., 0.029/0.028/0.025/0.020 for left-hand/right-hand/left-leg/right-leg). The control group showed a moderate age-related increase in absolute CST volumes and a biphasic age-related variation of the normalized CST volumes, which were lacking in the paretic children. CONCLUSIONS: This study demonstrates that DTI-MAP classification may provide a new imaging tool to quantify axonal loss in children with central motor dysfunction. Using this technique, we found that early-life brain lesions affect the maturational trajectory of the primary motor pathway which may be used as an effective marker to facilitate evidence-based treatment of paretic children.


Assuntos
Imagem de Tensor de Difusão/métodos , Vias Eferentes/patologia , Mãos/inervação , Perna (Membro)/inervação , Paresia/patologia , Tratos Piramidais/patologia , Adolescente , Criança , Pré-Escolar , Vias Eferentes/lesões , Feminino , Mãos/patologia , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Lactente , Perna (Membro)/patologia , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...