Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38718348

RESUMO

PEDOT: PSS has been widely used as a hole extraction layer (HEL) in organic solar cells (OSCs). However, their acidic nature can potentially corrode the indium tin oxide (ITO) electrode over time, leading to adverse effects on the longevity of the OSCs. Herein, we have developed a class of biphosphonic acid molecules with tunable dipole moments for self-assembled monolayers (SAMs), namely, 3-BPIC(i), 3-BPIC, and 3-BPIC-F, which exhibit an increasing dipole moment in sequence. Compared to centrosymmetric 3-BPIC(i), the axisymmetric 3-BPIC and 3-BPIC-F exhibit higher adsorption energies (Eads) with ITO, shorter interface spacing, more uniform coverage on ITO surface, and better interfacial compatibility with the active layer. Thanks to the incorporation of fluorine atoms, 3-BPIC-F exhibits a deeper highest occupied molecular orbital (HOMO) energy level and a larger dipole moment compared to 3-BPIC, resulting in an enlarged work function (WF) for the ITO/3-BPIC-F substrate. These advantages of 3-BPIC-F could not only improve hole extraction within the device but also lower the interfacial impedance and reduce nonradiative recombination at the interface. As a result, the OSCs using SAM based on 3-BPIC-F obtained a record high efficiency of 19.71%, which is higher than that achieved from the cells based on 3-BPIC(i) (13.54%) and 3-BPIC (19.34%). Importantly, 3-BPIC-F-based OSCs exhibit significantly enhanced stability compared to that utilizing PEDOT:PSS as HEL. Our work offers guidance for the future design of functional molecules for SAMs to realize even higher performance in organic solar cells.

2.
Small ; : e2311561, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546001

RESUMO

Balancing the rigid backbones and flexible side chains of light-harvesting materials is crucially important to reach optimized intermolecular packing, micromorphology, and thus photovoltaic performance of organic solar cells (OSCs). Herein, based on a distinctive CH-series acceptor platform with 2D conjugation extended backbones, a series of nonfullerene acceptors (CH-6F-Cn) are synthesized by delicately tuning the lengths of flexible side chains from n-octyl to n-amyl. A systemic investigation has revealed that the variation of the side chain's length can not only modulate intermolecular packing modes and crystallinity but also dramatically improve the micromorphology of the active layer and eventual photovoltaic parameters of OSCs. Consequently, the highest PCE of 18.73% can be achieved by OSCs employing D18:PM6:CH-6F-C8 as light-harvesting materials.

3.
Small ; : e2401054, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488748

RESUMO

2D conjugated extension on central units of small molecular acceptors (SMAs) has gained great successes in reaching the state-of-the-art organic photovoltaics. Whereas the limit size of 2D central planes and their dominant role in constructing 3D intermolecular packing networks are still elusive. Thus, by exploring a series of SMAs with gradually enlarged central planes, it is demonstrated that, at both single molecular and aggerated levels, there is an unexpected blue-shift for their film absorption but preferable reorganization energies, exciton lifetimes and binding energies with central planes enlarging, especially when comparing to their Y6 counterpart. More importantly, the significance of well-balanced molecular packing modes involving both central and end units is first disclosed through a systematic single crystal analysis, indicating that when the ratio of central planes area/end terminals area is no more than 3 likely provides a preferred 3D intermolecular packing network of SMAs. By exploring the limit size of 2D central planes, This work indicates that the structural profiles of ideal SMAs may require suitable central unit size together with proper heteroatom replacement instead of directly overextending 2D central planes to the maximum. These results will likely provide some guidelines for future better molecular design.

4.
Angew Chem Int Ed Engl ; 63(9): e202316698, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38169129

RESUMO

Morphological control of all-polymer blends is quintessential yet challenging in fabricating high-performance organic solar cells. Recently, solid additives (SAs) have been approved to be capable in tuning the morphology of polymer: small-molecule blends improving the performance and stability of devices. Herein, three perhalogenated thiophenes, which are 3,4-dibromo-2,5-diiodothiophene (SA-T1), 2,5-dibromo-3,4-diiodothiophene (SA-T2), and 2,3-dibromo-4,5-diiodothiophene (SA-T3), were adopted as SAs to optimize the performance of all-polymer organic solar cells (APSCs). For the blend of PM6 and PY-IT, benefitting from the intermolecular interactions between perhalogenated thiophenes and polymers, the molecular packing properties could be finely regulated after introducing these SAs. In situ UV/Vis measurement revealed that these SAs could assist morphological character evolution in the all-polymer blend, leading to their optimal morphologies. Compared to the as-cast device of PM6 : PY-IT, all SA-treated binary devices displayed enhanced power conversion efficiencies of 17.4-18.3 % with obviously elevated short-circuit current densities and fill factors. To our knowledge, the PCE of 18.3 % for SA-T1-treated binary ranks the highest among all binary APSCs to date. Meanwhile, the universality of SA-T1 in other all-polymer blends is demonstrated with unanimously improved device performance. This work provide a new pathway in realizing high-performance APSCs.

5.
J Am Chem Soc ; 146(5): 3363-3372, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38265366

RESUMO

Inverted organic solar cells (OSCs) have attracted much attention because of their outstanding stability, with zinc oxide (ZnO) being commonly used as the electron transport layer (ETL). However, both surface defects and the photocatalytic effect of ZnO could lead to serious photodegradation of acceptor materials. This, in turn, hampers the improvement of the efficiency and stability in OSCs. Herein, we developed a multiarmed aromatic ammonium salt, namely, benzene-1,3,5-triyltrimethanaminium bromide (PhTMABr), for modifying ZnO. This compound possesses mild weak acidity aimed at removing the residual amines present within ZnO film. In addition, the PhTMABr could also passivate surface defects of ZnO through multiple hydrogen-bonding interactions between its terminal amino groups and the oxygen anion of ZnO, leading to a better interface contact, which effectively enhances charge transport. As a result, an efficiency of 18.75% was achieved based on the modified ETL compared to the bare ZnO (PCE = 17.34%). The devices utilizing the modified ZnO retained 87% and 90% of their initial PCE after thermal stress aging at 65 °C for 1500 h and continuous 1-sun illumination with maximum power point (MPP) tracking for 1780 h, respectively. Importantly, the extrapolated T80 lifetime with MPP tracking exceeds 10 000 h. The new class of materials employed in this work to modify the ZnO ETL should pave the way for enhancing the efficiency and stability of OSCs, potentially advancing their commercialization process.

6.
Angew Chem Int Ed Engl ; 62(49): e202311686, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37858963

RESUMO

Two exotic 6-cantilever small molecular platforms, characteristic of quite different molecular configurations of propeller and quasi-plane, are established by extremely two-dimensional conjugated extension. When applied in small molecular acceptors, the only two cases of CH25 and CH26 that could contain six terminals and such broad conjugated backbones have been afforded thus far, rendering featured absorptions, small reorganization and exciton binding energies. Moreover, their distinctive but completely different molecular geometries result in sharply contrasting nanoscale film morphologies. Finally, CH26 contributes to the best device efficiency of 15.41 % among acceptors with six terminals, demonstrating two pioneered yet highly promising 6-cantilever molecular innovation platforms.

7.
Angew Chem Int Ed Engl ; 62(44): e202312630, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37704576

RESUMO

Due to the intrinsically flexible molecular skeletons and loose aggregations, organic semiconductors, like small molecular acceptors (SMAs) in organic solar cells (OSCs), greatly suffer from larger structural/packing disorders and weaker intermolecular interactions comparing to their inorganic counterparts, further leading to hindered exciton diffusion/dissociation and charge carrier migration in resulting OSCs. To overcome this challenge, complete peripheral fluorination was performed on basis of a two-dimensional (2D) conjugation extended molecular platform of CH-series SMAs, rendering an acceptor of CH8F with eight fluorine atoms surrounding the molecular backbone. Benefitting from the broad 2D backbone, more importantly, strengthened fluorine-induced secondary interactions, CH8F and its D18 blends afford much enhanced and more ordered molecular packings accompanying with enlarged dielectric constants, reduced exciton binding energies and more obvious fibrillary networks comparing to CH6F controls. Consequently, D18:CH8F-based OSCs reached an excellent efficiency of 18.80 %, much better than that of 17.91 % for CH6F-based ones. More excitingly, by employing D18-Cl that possesses a highly similar structure to D18 as a third component, the highest efficiency of 19.28 % for CH-series SMAs-based OSCs has been achieved so far. Our work demonstrates the dramatical structural multiformity of CH-series SMAs, meanwhile, their high potential for constructing record-breaking OSCs through peripheral fine-tuning.

8.
Angew Chem Int Ed Engl ; 62(42): e202308832, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37626468

RESUMO

In the molecular optimizations of non-fullerene acceptors (NFAs), extending the central core can tune the energy levels, reduce nonradiative energy loss, enhance the intramolecular (donor-acceptor and acceptor-acceptor) packing, facilitate the charge transport, and improve device performance. In this study, a new strategy was employed to synthesize acceptors featuring conjugation-extended electron-deficient cores. Among these, the acceptor CH-BBQ, embedded with benzobisthiadiazole, exhibited an optimal fibrillar network morphology, enhanced crystallinity, and improved charge generation/transport in blend films, leading to a power conversion efficiency of 18.94 % for CH-BBQ-based ternary organic solar cells (OSCs; 18.19 % for binary OSCs) owing to its delicate structure design and electronic configuration tuning. Both experimental and theoretical approaches were used to systematically investigate the influence of the central electron-deficient core on the properties of the acceptor and device performance. The electron-deficient core modulation paves a new pathway in the molecular engineering of NFAs, propelling relevant research forward.

9.
Angew Chem Int Ed Engl ; 62(38): e202307962, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37547954

RESUMO

To exploit the potential of our newly developed three-dimensional (3D) dimerized acceptors, a series of chlorinated 3D acceptors (namely CH8-3/4/5) were reported by precisely tuning the position of chlorine (Cl) atom. The introduction of Cl atom in central unit affects the molecular conformation. Whereas, by replacing fluorinated terminal groups (CH8-3) with chlorinated terminal groups (CH8-4 and CH8-5), the red-shift absorption and enhanced crystallization are achieved. Benefiting from these, all devices received promising power conversion efficiencies (PCEs) over 16 % as well as decent thermal/photo-stabilities. Among them, PM6:CH8-4 based device yielded a best PCE of 17.58 %. Besides, the 3D merits with multi alkyl chains enable their versatile processability during the device preparation. Impressive PCEs of 17.27 % and 16.23 % could be achieved for non-halogen solvent processable devices prepared in glovebox and ambient, respectively. 2.88 cm2 modules also obtained PCEs over 13 % via spin-coating and blade-coating methods, respectively. These results are among the best performance of dimerized acceptors. The decent performance of CH8-4 on small-area devices, modules and non-halogen solvent-processed devices highlights the versatile processing capability of our 3D acceptors, as well as their potential applications in the future.

10.
Chem Commun (Camb) ; 59(68): 10307-10310, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37548238

RESUMO

Based on the newly synthesized seleno[3,2-b]selenophene unit, two near-infrared non-fullerene acceptors (NFAs) of 4Se and 5Se are constructed by replacing four or all sulfurs with selenium in high-efficiency Y-series NFAs. Consequently, binary devices based on 4Se and 5Se afford PCEs of 15.17% and 15.23%, respectively, with a photoelectric response approaching 1000 nm. More excitingly, the energy loss of the 5Se-based device was as low as 0.477 eV along with almost the smallest non-radiative loss of ∼0.15 eV thus far.

11.
Nat Commun ; 14(1): 4707, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543678

RESUMO

Given that bromine possesses similar properties but extra merits of easily synthesizing and polarizing comparing to homomorphic fluorine and chlorine, it is quite surprising very rare high-performance brominated small molecule acceptors have been reported. This may be caused by undesirable film morphologies stemming from relatively larger steric hindrance and excessive crystallinity of bromides. To maximize the advantages of bromides while circumventing weaknesses, three acceptors (CH20, CH21 and CH22) are constructed with stepwise brominating on central units rather than conventional end groups, thus enhancing intermolecular packing, crystallinity and dielectric constant of them without damaging the favorable intermolecular packing through end groups. Consequently, PM6:CH22-based binary organic solar cells render the highest efficiency of 19.06% for brominated acceptors, more excitingly, a record-breaking efficiency of 15.70% when further thickening active layers to ~500 nm. By exhibiting such a rare high-performance brominated acceptor, our work highlights the great potential for achieving record-breaking organic solar cells through delicately brominating.

12.
Angew Chem Int Ed Engl ; 61(41): e202209580, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35894110

RESUMO

Halogenation of terminal of acceptors has been shown to give dramatic improvements in power conversion efficiencies (PCEs) of organic solar cells (OSCs). Similar significant results could be expected from the halogenation of the central units of state-of-the-art Y-series acceptors. Herein, a pair of acceptors, termed CH6 and CH4, featuring a conjugation-extended phenazine central unit with and without fluorination, have been synthesized. The fluorinated CH6 has enhanced molecular interactions and crystallinity, superior fibrillar network morphology and improved charge generation and transport in blend films, thus affording a higher PCE of 18.33 % for CH6-based binary OSCs compared to 16.49 % for the non-fluorinated CH4. The new central site offers further opportunities for structural optimization of Y-series molecules to afford better-performed OSCs and reveals the effectiveness of fluorination on central units.

13.
Proc Natl Acad Sci U S A ; 119(23): e2204852119, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35648822

RESUMO

Cephalopod (e.g., squid, octopus, etc.) skin is a soft cognitive organ capable of elastic deformation, visualizing, stealth, and camouflaging through complex biological processes of sensing, recognition, neurologic processing, and actuation in a noncentralized, distributed manner. However, none of the existing artificial skin devices have shown distributed neuromorphic processing and cognition capabilities similar to those of a cephalopod skin. Thus, the creation of an elastic, biaxially stretchy device with embedded, distributed neurologic and cognitive functions mimicking a cephalopod skin can play a pivotal role in emerging robotics, wearables, skin prosthetics, bioelectronics, etc. This paper introduces artificial neuromorphic cognitive skins based on arrayed, biaxially stretchable synaptic transistors constructed entirely out of elastomeric materials. Systematic investigation of the synaptic characteristics such as the excitatory postsynaptic current, paired-pulse facilitation index of the biaxially stretchable synaptic transistor under various levels of biaxial mechanical strain sets the operational foundation for stretchy distributed synapse arrays and neuromorphic cognitive skin devices. The biaxially stretchy arrays here achieved neuromorphic cognitive functions, including image memorization, long-term memorization, fault tolerance, programming, and erasing functions under 30% biaxial mechanical strain. The stretchy neuromorphic imaging sensory skin devices showed stable neuromorphic pattern reinforcement performance under both biaxial and nonuniform local deformation.


Assuntos
Órgãos Artificiais , Robótica , Pele , Sinapses , Animais , Cefalópodes , Cognição , Pele/inervação , Transistores Eletrônicos
14.
Adv Mater ; 32(32): e1906129, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32583916

RESUMO

With developments in materials, thin-film processing, fine-tuning of morphology, and optimization of device fabrication, the performance of organic solar cells (OSCs) has improved markedly in recent years. Designing low-bandgap materials has been a focus in order to maximize solar energy conversion. However, there are only a few successful low-bandgap donor materials developed with near-infrared (NIR) absorption that are well matched to the existing efficient acceptors. Porphyrin has shown great potential as a useful building block for constructing low-bandgap donor materials due to its large conjugated plane and strong absorption. Porphyrin-based donor materials have been shown to contribute to many record-high device efficiencies in small molecule, tandem, ternary, flexible, and OSC/perovskite hybrid solar cells. Specifically, non-fullerene small-molecule solar cells have recently shown a high power conversion efficiency of 12% using low-bandgap porphyrin. All these have validated the great potential of porphyrin derivatives as effective donor materials and made DPPEZnP-TRs a family of best low-bandgap donor materials in the OSC field so far. Here, recent progress in the rational design, morphology, dynamics, and multi-functional applications starting from 2015 will be highlighted to deepen understanding of the structure-property relationship. Finally, some future directions of porphyrin-based OSCs are presented.

15.
Nat Commun ; 10(1): 3271, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31332173

RESUMO

Efficient organic solar cells (OSCs) often use combination of polymer donor and small molecule acceptor. Herein we demonstrate efficient and thermally stable OSCs with combination of small molecule donor and polymer acceptor, which is expected to expand the research field of OSCs. Typical small molecule donors show strong intermolecular interactions and high crystallinity, and consequently do not match polymer acceptors because of large-size phase separation. We develop a small molecule donor with suppressed π-π stacking between molecular backbones by introducing large steric hindrance. As the result, the OSC exhibits small-size phase separation in the active layer and shows a power conversion efficiency of 8.0%. Moreover, this OSC exhibits much improved thermal stability, i.e. maintaining 89% of its initial efficiency after thermal annealing the active layer at 180 °C for 7 days. These results indicate a different kind of efficient and stable OSCs.

16.
Adv Mater ; 31(18): e1804723, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30907041

RESUMO

The tandem structure is an efficient way to simultaneously tackle absorption and thermalization losses of the single junction solar cells. In this work, a high-performance tandem organic solar cell (OSC) using two subcells with the same donor poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))] (PBDB-T) and two acceptors, F-M and 2,9-bis(2-methylene-(3(1,1-dicyanomethylene)benz[f ]indanone))7,12-dihydro-(4,4,10,10-tetrakis(4-hexylphenyl)-5,11-diocthylthieno[3',2':4,5]cyclopenta[1,2-b]thieno[2″,3″:3',4']cyclopenta[1',2':4,5]thieno[2,3-f][1]benzothiophene (NNBDT), with complementary absorptions is demonstrated. The two subcells show high Voc with value of 0.99 V for the front cell and 0.86 V for the rear cell, which is the prerequisite for obtaining high Voc of their series-connected tandem device. Although there is much absorption overlap for the subcells, a decent Jsc of the tandem cell is still obtained owing to the complementary absorption of the two acceptors in a wide range. With systematic device optimizations, a best power conversion efficiency of 14.52% is achieved for the tandem device, with a high Voc of 1.82 V, a notable FF of 74.7%, and a decent Jsc of 10.68 mA cm-2 . This work demonstrates a promising strategy of fabricating high-efficiency tandem OSCs through elaborate selection of the active layer materials in each subcell and tradeoff of the Voc and Jsc of the tandem cells.

17.
Adv Mater ; 31(12): e1807842, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30730067

RESUMO

In this paper, two near-infrared absorbing molecules are successfully incorporated into nonfullerene-based small-molecule organic solar cells (NFSM-OSCs) to achieve a very high power conversion efficiency (PCE) of 12.08%. This is achieved by tuning the sequentially evolved crystalline morphology through combined solvent additive and solvent vapor annealing, which mainly work on ZnP-TBO and 6TIC, respectively. It not only helps improve the crystallinity of the ZnP-TBO and 6TIC blend, but also forms multilength scale morphology to enhance charge mobility and charge extraction. Moreover, it simultaneously reduces the nongeminate recombination by effective charge delocalization. The resultant device performance shows remarkably enhanced fill factor and Jsc . These result in a very respectable PCE, which is the highest among all NFSM-OSCs and all small-molecule binary solar cells reported so far.

18.
J Am Chem Soc ; 140(37): 11639-11646, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30157626

RESUMO

Two-dimensional (2D) Ruddlesden-Popper perovskites have shown great potential for application in perovskite solar cells due to their appealing environmental stability. However, 2D perovskites generally show poor photovoltaic performance. Here, a new type of 2D perovskite using 2-thiophenemethylammonium (ThMA+) as a spacer cation was developed and high photovoltaic performance as well as enhanced stability in comparison with its 3D counterpart was demonstrated. The use of the 2D perovskite (ThMA)2(MA) n-1Pb nI3 n+1 ( n = 3) in deposited highly oriented thin films from N, N-dimethylformamide using a methylammonium chloride (MACl) assisted film-forming technique dramatically improves the efficiency of 2D perovskite photovoltaic devices from 1.74% to over 15%, which is the highest efficiency for 2D perovskite ( n < 6) solar cells so far. The enhanced performance of the 2D perovskite devices using MACl as additive is ascribed to the growth of a dense web of nanorod-like film with near-single-crystalline quality, in which the crystallographic planes of the 2D MA n-1Pb nI3 n+12- slabs preferentially aligned perpendicular to the substrate, thus facilitating efficient charge transport. This work provides a new insight into exploration of the formation mechanism of 2D perovskites with increased crystallinity and crystal orientation suitable for high-performance solar cells.

19.
Adv Sci (Weinh) ; 5(6): 1800307, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29938192

RESUMO

A new acceptor-donor-acceptor (A-D-A) type nonfullerene acceptor, 3TT-FIC, which has three fused thieno[3,2-b]thiophene as the central core and difluoro substituted indanone as the end groups, is designed and synthesized. 3TT-FIC exhibits broad and strong absorption with extended onset absorption to 995 nm and a low optical bandgap of 1.25 eV. The binary device based on 3TT-FIC and the polymer PTB7-Th exhibits a power conversion efficiency (PCE) of 12.21% with a high short circuit current density (   Jsc) of 25.89 mA cm-2. To fine-tune the morphology and make full use of the visible region sunlight, phenyl-C71-butyricacid-methyl ester (PC71BM) is used as the third component to fabricate ternary devices. In contrast to the binary devices, the ternary blend organic solar cells show significantly enhanced EQE ranging from 300 to 700 nm and thus an improved  Jsc with a high value of 27.73 mA cm-2. A high PCE with a value of 13.54% is achieved for the ternary devices, which is one of the highest efficiencies in single junction organic solar cells reported to date. The results provide valuable insight for the ternary devices in which the external quantum efficiency (EQE) induced by the third component is evidently observed and directly contributed to the enhancement of the device efficiency.

20.
ACS Appl Mater Interfaces ; 10(11): 9587-9594, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29489322

RESUMO

Much effort has been devoted to the development of new donor materials for small-molecule organic solar cells due to their inherent advantages of well-defined molecular weight, easy purification, and good reproducibility in photovoltaic performance. Herein, we report two small-molecule donors that are compatible with both fullerene and nonfullerene acceptors. Both molecules consist of an (E)-1,2-di(thiophen-2-yl)ethane-substituted (TVT-substituted) benzo[1,2-b:4,5-b']dithiophene (BDT) as the central unit, and two rhodanine units as the terminal electron-withdrawing groups. The central units are modified with either alkyl side chains (DRBDT-TVT) or alkylthio side chains (DRBDT-STVT). Both molecules exhibit a medium bandgap with complementary absorption and proper energy level offset with typical acceptors like PC71BM and IDIC. The optimized devices show a decent power conversion efficiency (PCE) of 6.87% for small-molecule organic solar cells and 6.63% for nonfullerene all small-molecule organic solar cells. Our results reveal that rationally designed medium-bandgap small-molecule donors can be applied in high-performance small-molecule organic solar cells with different types of acceptors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...