Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 12(16): 9862-9867, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35424962

RESUMO

The lack of stable electrode materials for water-based electrolytes due to the intercalation and conversion reaction mechanisms encourage scientists to design new or renovate existing materials with better cyclability, capacity, and cost-effectiveness. Ag4[Fe(CN)6] is a material belonging to the Prussian blue family that can be used, as its other family members, as an electrode material with the intercalation/deintercalation reaction or conversion-type mechanism through Ag oxidation/reduction. However, due to the instability of this material in its dry state, it decomposes to AgCN and a Prussian blue residual complex. A possible reason for Ag4[Fe(CN)6] decomposition is discussed. Nevertheless, it is shown that the decomposition products of Ag4[Fe(CN)6] have electrochemical activity due to the reversible oxidation/reduction of Ag atoms in water-based electrolytes.

2.
Chromosoma ; 117(1): 41-50, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17876596

RESUMO

In Drosophila melanogaster, broken chromosome ends behave as real telomeres and are believed to be covered with telomere-specific chromatin. It has been shown previously that the telomeric chromatin represses normal activity of enhancers that regulate yellow expression in wings and body cuticle. In this paper, we have found that a modified yellow promoter is fully active in the wing and body cuticle when it is located at the chromosome end, which is evidence that the telomeric chromatin does not repress transcription. Substitution of the yellow core promoter region, including TATA and Inr, with the promoter regions of the eve, hsp70 (TATA-containing), and white (TATA-less) promoters does not affect the ability of the promoter to be cis- or trans-activated by the yellow enhancers if the heterologous promoter is located at a distance of about 6 kb from the chromosome end. The best characterized Drosophila insulator found in the gypsy retrotransposon can specifically repress the yellow promoter at a distance when one component of the insulator complex, Mod(mdg4)-67.2 protein, is inactive. We have also found that, in the mod(mdg4) mutant background, the gypsy insulator can repress the heterologous promoters, indicating that the core promoter elements are not critical for specificity of repression. However, long-distance functional enhancer-promoter and gypsy-promoter interactions were suppressed when the distance between the yellow promoter and the end of the deficient chromosome was less than 6 kb. These results suggest that Drosophila telomeric chromatin does not generally repress transcription but is somehow involved in suppression of some long-distance interactions between regulatory elements.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas/genética , Sequências Reguladoras de Ácido Nucleico , Retroelementos , Fatores de Transcrição/genética , Animais , Animais Geneticamente Modificados , Sequência de Bases , Southern Blotting , Cromatina/genética , Cromossomos/genética , Primers do DNA , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Masculino , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...