Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photoacoustics ; 27: 100370, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35646591

RESUMO

The Synthetic Aperture Focusing Technique (SAFT) is an imaging algorithm used in laser ultrasonics (LU) to visualise the appearance of defects. However, ultrasound excited by a pulsed laser has the characteristics of wide bandwidth and multi-mode directivity patterns, leading to common problems in the SAFT process, such as low utilisation of ultrasound information and possible artefacts. To solve these problems, a Multi-mode Time-domain SAFT (MMT-SAFT) algorithm is proposed in this paper. The influence of ultrasonic directivity is discussed according to the imaging depth range, and imaging with multiple LU modes is performed to reduce artefacts. Simulations and experimental results prove the feasibility of the MMT-SAFT algorithm, which not only presents a clearer image of the upper part of defects but also improves image quality compared with time-domain SAFT using a single ultrasonic mode. The proposed technique can provide feasible directions for laser ultrasonic defect imaging.

2.
Photoacoustics ; 22: 100248, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33732616

RESUMO

The Laser Ultrasonic (LU) technique has been widely studied. Detected ultrasonic signals can be further processed using Synthetic Aperture Focusing Techniques (SAFTs), to detect and image internal defects. LU-based SAFT in frequency-domain (F-SAFT) is developed to visualize horizontal hole-type defects in aluminum. Bulk acoustic waves are non-destructively generated by irradiating a laser line-source, and detected using a laser Doppler vibrometer at a point away from the generation. The influence of this non-coincident generation-detection on the equivalent acoustic velocity used in the algorithm is studied via velocity mappings. Because the wide-band generation characteristic of the LU technique, frequency range selections in acoustic wave signals are implemented to increase Signal-to-Noise Ratio (SNR) and reconstruction speed. Results indicate that by using the LU F-SAFT algorithm, and incorporating optimizations such as velocity mapping and frequency range selection, small defects can be visualized in 3D with corrected locations and improved image quality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...