Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biodegradation ; 35(1): 71-86, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37052742

RESUMO

This study presents the effect of ultra-violet (UV) light radiation on the process kinetics, metabolic performance, and biodegradation capability of Scenedesmus vacuolatus. The impact of the UV radiation on S. vacuolatus morphology, chlorophyll, carotenoid, carbohydrates, proteins, lipid accumulation, growth rate, substrate affinity and substrate versatility were evaluated. Thereafter, a preliminary biodegradative potential of UV-exposed S. vacuolatus on spent coolant waste (SCW) was carried out based on dehydrogenase activity (DHA) and total petroleum hydrocarbon degradation (TPH). Pronounced structural changes were observed in S. vacuolatus exposed to UV radiation for 24 h compared to the 2, 4, 6, 12 and 48 h UV exposure. Exposure of S. vacuolatus to UV radiation improved cellular chlorophyll (chla = 1.89-fold, chlb = 2.02-fold), carotenoid (1.24-fold), carbohydrates (4.62-fold), proteins (1.44-fold) and lipid accumulations (1.40-fold). In addition, the 24 h UV exposed S. vacuolatus showed a significant increase in substrate affinity (1/Ks) (0.959), specific growth rate (µ) (0.024 h-1) and biomass accumulation (0.513 g/L) by 1.50, 2 and 1.9-fold respectively. Moreover, enhanced DHA (55%) and TPH (100%) degradation efficiency were observed in UV-exposed S. vacuolatus. These findings provided major insights into the use of UV radiation to enhance S. vacuolatus biodegradative performance towards sustainable green environment negating the use of expensive chemicals and other unfriendly environmental practices.


Assuntos
Scenedesmus , Raios Ultravioleta , Scenedesmus/metabolismo , Clorofila/metabolismo , Clorofila/farmacologia , Carotenoides/metabolismo , Carotenoides/farmacologia , Carboidratos/farmacologia , Lipídeos/farmacologia , Biodegradação Ambiental
2.
Biotechnol Rep (Amst) ; 29: e00585, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33511040

RESUMO

This study examines the effects of nanoparticle inclusion in instantaneous saccharification and fermentation (NIISF) of waste potato peels. The effect of nanoparticle inclusion on the fermentation process was investigated at different stages which were: pre-treatment, liquefaction, saccharification and fermentation. Inclusion of NiO NPs at the pre-treatment stage gave a 1.60-fold increase and 2.10-fold reduction in bioethanol and acetic acid concentration respectively. Kinetic data on the bioethanol production fit the modified Gompertz model (R 2 > 0.98). The lowest production lag time (t L) of 1.56 h, and highest potential bioethanol concentration (P m) of 32 g/L were achieved with NiO NPs inclusion at different process stages; the liquefaction stage and the pre-treatment phase, respectively. Elevated bioethanol yield, coupled with substantial reduction in process inhibitors in the NIISF processes, demonstrated the significance of point of nanobiocatalysts inclusion for the scale-up development of bioethanol production from potato peels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA