Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Recept Signal Transduct Res ; 39(1): 28-38, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31241401

RESUMO

Vanishing white matter (VWM) is a hereditary human disease, mostly prevalent in childhood caused by the defects in the eukaryotic initiation factor beta subunits. It is the first disease involved in the translation initiation factor, eIF2B. There is no specific treatment for VWM which mainly affect the brain and ovaries. The gray matter remains normal in all characteristics while the white matter changes texture, coming to the pathophysiology, many initiation factors are involved in the initiation of translation of mRNAs into polypeptides. In this study, the three-dimensional structure of PhMTNA protein was modeled and the stability ascertained through Molecular dynamic simulation (MDS) for 100 ns. The active site residues are conserved with the reported BsMTNA structure which is also confirmed through sitemap prediction. Through virtual screening and induced fit docking, top five leads against PhMTNA protein was identified based on their binding mode and affinity. ADME properties and DFT (Density Functional Theory) studies of these compounds were studied. In addition to that, computational mutagenesis studies were performed to identify the hotspot residues involved in the protein-ligand interactions. Overall analysis showed that the compound NCI_941 has a highest binding energy of -46.256 kcal mol-1 in the Arg57Ala mutant. Thus, the results suggest that NCI_941 would act as a potent inhibitor against PhMTNA protein.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Isomerases/antagonistas & inibidores , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Doenças do Sistema Nervoso/tratamento farmacológico , Domínio Catalítico , Humanos , Isomerases/metabolismo , Ligantes , Ligação Proteica
2.
J Comput Biol ; 26(5): 457-472, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30785305

RESUMO

In bacterial and archaeal purine biosynthetic pathways, sixth step involves utilization of enzyme PurE, catalyzing the translation of aminoimidazole ribonucleotide to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR) with carbon dioxide. The formation of CAIR takes place through an unstable intermediate N5-CAIR, played by two enzymes-N5-CAIR synthetase (PurK) and N5-CAIR mutase (PurE) that further catalyzes the reaction of N5-CAIR to CAIR. In this study, N5-CAIR mutase (PH0320) from Pyrococcus horikoshii OT3 (PurE) was considered. The three-dimensional structure of Pyrococcus horikoshii OT3 was modeled based on the structure of PurE from Escherichia coli. The modeled structure was subjected to molecular dynamics simulation up to 100 ns, and least energy structure from the simulation was subjected to virtual screening and induced fit docking to identify the best potent leads. A total of five best antagonists were identified based on their affinity and mode of binding leading with conserved residues Ser18, Ser20, Asp21, Ser45, Ala46, His47, Arg48, Ala72, Gly73, Ala75, and His77 promotes the activity of Ph-N5-CAIR mutase. In addition to molecular dynamics, absorption, digestion, metabolism, and excretion properties, binding free energy and density functional theory calculations of compounds were carried out. Based on analyses, compound from National Cancer Institute (NCI) database, NCI_826 was adjudged as the best potent lead molecule and could be suggested as the suitable inhibitor of N5-CAIR mutase.


Assuntos
Proteínas de Bactérias/metabolismo , Transferases Intramoleculares/metabolismo , Pyrococcus horikoshii/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/fisiologia , Escherichia coli/metabolismo , Simulação de Dinâmica Molecular , Purinas/metabolismo , Ribonucleotídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...