Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
iScience ; 27(4): 109367, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38500836

RESUMO

Acetylation of histones by lysine acetyltransferases (KATs) provides a fundamental mechanism by which chromatin structure and transcriptional programs are regulated. Here, we describe a dual binding activity of the first winged helix domain of human MORF KAT (MORFWH1) that recognizes the TAZ2 domain of p300 KAT (p300TAZ2) and CpG rich DNA sequences. Structural and biochemical studies identified distinct DNA and p300TAZ2 binding sites, allowing MORFWH1 to independently engage either ligand. Genomic data show that MORF/MOZWH1 colocalizes with H3K18ac, a product of enzymatic activity of p300, on CpG rich promoters of target genes. Our findings suggest a functional cooperation of MORF and p300 KATs in transcriptional regulation.

2.
Nat Struct Mol Biol ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448574

RESUMO

JADE is a core subunit of the HBO1 acetyltransferase complex that regulates developmental and epigenetic programs and promotes gene transcription. Here we describe the mechanism by which JADE facilitates recruitment of the HBO1 complex to chromatin and mediates its enzymatic activity. Structural, genomic and complex assembly in vivo studies show that the PZP (PHD1-zinc-knuckle-PHD2) domain of JADE engages the nucleosome through binding to histone H3 and DNA and is necessary for the association with chromatin targets. Recognition of unmethylated H3K4 by PZP directs enzymatic activity of the complex toward histone H4 acetylation, whereas H3K4 hypermethylation alters histone substrate selectivity. We demonstrate that PZP contributes to leukemogenesis, augmenting transforming activity of the NUP98-JADE2 fusion. Our findings highlight biological consequences and the impact of the intact JADE subunit on genomic recruitment, enzymatic function and pathological activity of the HBO1 complex.

3.
J Neurochem ; 168(4): 342-354, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37994470

RESUMO

Skeletal muscle fiber is a large syncytium with multiple and evenly distributed nuclei. Adult subsynaptic myonuclei beneath the neuromuscular junction (NMJ) express specific genes, the products of which coordinately function in the maintenance of the pre- and post-synaptic regions. However, the gene expression profiles that promote the NMJ formation during embryogenesis remain largely unexplored. We performed single-nucleus RNA sequencing (snRNA-seq) analysis of embryonic and neonatal mouse diaphragms, and found that each myonucleus had a distinct transcriptome pattern during the NMJ formation. Among the previously reported NMJ-constituting genes, Dok7, Chrna1, and Chrnd are specifically expressed in subsynaptic myonuclei at E18.5. In the E18.5 diaphragm, ca. 10.7% of the myonuclei express genes for the NMJ formation (Dok7, Chrna1, and Chrnd) together with four representative ß-catenin regulators (Amotl2, Ptprk, Fam53b, and Tcf7l2). Additionally, the temporal gene expression patterns of these seven genes are synchronized in differentiating C2C12 myoblasts. Amotl2 and Ptprk are expressed in the sarcoplasm, where ß-catenin serves as a structural protein to organize the membrane-anchored NMJ structure. In contrast, Fam53b and Tcf7l2 are expressed in the myonucleus, where ß-catenin serves as a transcriptional coactivator in Wnt/ß-catenin signaling at the NMJ. In C2C12 myotubes, knockdown of Amotl2 or Ptprk markedly, and that of Fam53b and Tcf7l2 less efficiently, impair the clustering of acetylcholine receptors. In contrast, knockdown of Fam53b and Tcf7l2, but not of Amotl2 or Ptprk, impairs the gene expression of Slit2 encoding an axonal attractant for motor neurons, which is required for the maturation of motor nerve terminal. Thus, Amotl2 and Ptprk exert different roles at the NM compared to Fam53b and Tcf7l2. Additionally, Wnt ligands originating from the spinal motor neurons and the perichondrium/chondrocyte are likely to work remotely on the subsynaptic nuclei and the myotendinous junctional nuclei, respectively. We conclude that snRNA-seq analysis of embryonic/neonatal diaphragms reveal a novel coordinated expression profile especially in the Wnt/ß-catenin signaling that regulate the formation of the embryonic NMJ.


Assuntos
Transcriptoma , beta Catenina , Camundongos , Animais , beta Catenina/metabolismo , Junção Neuromuscular/genética , Junção Neuromuscular/metabolismo , Via de Sinalização Wnt/genética , RNA Nuclear Pequeno/metabolismo , Desenvolvimento Embrionário , Músculo Esquelético/metabolismo , Receptores Colinérgicos/metabolismo
4.
Sci Adv ; 9(50): eadj4407, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38091391

RESUMO

Myeloid/natural killer (NK) cell precursor acute leukemia (MNKPL) has been described on the basis of its unique immunophenotype and clinical phenotype. However, there is no consensus on the characteristics for identifying this disease type because of its rarity and lack of defined distinctive molecular characteristics. In this study, multiomics analysis revealed that MNKPL is distinct from acute myeloid leukemia, T cell acute lymphoblastic leukemia, and mixed-phenotype acute leukemia (MPAL), and NOTCH1 and RUNX3 activation and BCL11B down-regulation are hallmarks of MNKPL. Although NK cells have been classically considered to be lymphoid lineage-derived, the results of our single-cell analysis using MNKPL cells suggest that NK cells and myeloid cells share common progenitor cells. Treatment outcomes for MNKPL are unsatisfactory, even when hematopoietic cell transplantation is performed. Multiomics analysis and in vitro drug sensitivity assays revealed increased sensitivity to l-asparaginase and reduced levels of asparagine synthetase (ASNS), supporting the clinically observed effectiveness of l-asparaginase.


Assuntos
Asparaginase , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/terapia , Doença Aguda , Células Matadoras Naturais , Resultado do Tratamento , Proteínas Repressoras , Proteínas Supressoras de Tumor
5.
Nat Commun ; 14(1): 8375, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102134

RESUMO

The mechanism underlying the development of tumors, particularly at early stages, still remains mostly elusive. Here, we report whole-genome long and short read sequencing analysis of 76 lung cancers, focusing on very early-stage lung adenocarcinomas such as adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma. The obtained data is further integrated with bulk and spatial transcriptomic data and epigenomic data. These analyses reveal key events in lung carcinogenesis. Minimal somatic mutations in pivotal driver mutations and essential proliferative factors are the only detectable somatic mutations in the very early-stage of AIS. These initial events are followed by copy number changes and global DNA hypomethylation. Particularly, drastic changes are initiated at the later AIS stage, i.e., in Noguchi type B tumors, wherein cancer cells are exposed to the surrounding microenvironment. This study sheds light on the pathogenesis of lung adenocarcinoma from integrated pathological and molecular viewpoints.


Assuntos
Adenocarcinoma in Situ , Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/patologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Pulmão/patologia , Adenocarcinoma in Situ/genética , Mutação , Microambiente Tumoral
6.
Nat Commun ; 14(1): 8372, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102116

RESUMO

ATP-dependent chromatin remodeling SWI/SNF complexes exist in three subcomplexes: canonical BAF (cBAF), polybromo BAF (PBAF), and a newly described non-canonical BAF (ncBAF). While cBAF and PBAF regulate fates of multiple cell types, roles for ncBAF in hematopoietic stem cells (HSCs) have not been investigated. Motivated by recent discovery of disrupted expression of BRD9, an essential component of ncBAF, in multiple cancers, including clonal hematopoietic disorders, we evaluate here the role of BRD9 in normal and malignant HSCs. BRD9 loss enhances chromatin accessibility, promoting myeloid lineage skewing while impairing B cell development. BRD9 significantly colocalizes with CTCF, whose chromatin recruitment is augmented by BRD9 loss, leading to altered chromatin state and expression of myeloid-related genes within intact topologically associating domains. These data uncover ncBAF as critical for cell fate specification in HSCs via three-dimensional regulation of gene expression and illuminate roles for ncBAF in normal and malignant hematopoiesis.


Assuntos
Cromatina , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Montagem e Desmontagem da Cromatina , Diferenciação Celular , Células-Tronco Hematopoéticas/metabolismo
7.
J Clin Invest ; 133(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966117

RESUMO

The heterogeneity of cancer stem cells (CSCs) within tumors presents a challenge in therapeutic targeting. To decipher the cellular plasticity that fuels phenotypic heterogeneity, we undertook single-cell transcriptomics analysis in triple-negative breast cancer (TNBC) to identify subpopulations in CSCs. We found a subpopulation of CSCs with ancestral features that is marked by FXYD domain-containing ion transport regulator 3 (FXYD3), a component of the Na+/K+ pump. Accordingly, FXYD3+ CSCs evolve and proliferate, while displaying traits of alveolar progenitors that are normally induced during pregnancy. Clinically, FXYD3+ CSCs were persistent during neoadjuvant chemotherapy, hence linking them to drug-tolerant persisters (DTPs) and identifying them as crucial therapeutic targets. Importantly, FXYD3+ CSCs were sensitive to senolytic Na+/K+ pump inhibitors, such as cardiac glycosides. Together, our data indicate that FXYD3+ CSCs with ancestral features are drivers of plasticity and chemoresistance in TNBC. Targeting the Na+/K+ pump could be an effective strategy to eliminate CSCs with ancestral and DTP features that could improve TNBC prognosis.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Células-Tronco Neoplásicas/patologia , Linhagem Celular Tumoral , Proteínas de Membrana , Proteínas de Neoplasias/genética
8.
Br J Haematol ; 203(3): 426-438, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37584109

RESUMO

The shift of the tumour immune microenvironment to a suppressive state promotes not only the development and progression of the disease in multiple myeloma (MM) but also the development of resistance to immunotherapy. We previously demonstrated that myeloma cells can induce monocytic myeloid-derived suppressor cells (M-MDSCs) from healthy peripheral blood mononuclear cells (PBMCs) via the concomitant secretion of CC motif chemokine ligand 5 (CCL5) and macrophage migration inhibitory factor (MIF), but an unknown mediator also promotes M-MDSC induction. This study demonstrates that miR-106a-5p and miR-146a-5p delivered by tumour-derived exosomes (TEXs) from myeloma cells play essential roles in M-MDSC induction in MM. MiR-106a-5p and miR-146a-5p upregulate various immunosuppressive/inflammatory molecules in PBMCs, such as IDO1, CD38, programmed death-ligand 1, CCL5 or MYD88, which are involved in interferon (IFN)-α response, IFN-γ response, inflammatory response, tumour necrosis factor-α signalling and Interleukin-6-JAK-STAT3 signalling. These molecular features mirror the increases in myeloid cellular compartments of PBMCs when co-cultured with myeloma cells. MiR-106a-5p and miR-146a-5p have a compensatory relationship, and these two miRNAs collaborate with CCL5 and MIF to promote M-MDSC induction. Collectively, novel therapeutic candidates may be involved in TEX-mediated sequential cellular and molecular events underlying M-MDSC induction, potentially improving the efficacy of immunotherapy.

9.
iScience ; 26(7): 107143, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37456852

RESUMO

Beige adipocytes are inducible thermogenic adipocytes used for anti-obesity treatment. Beige adipocytes rapidly lose their thermogenic capacity once external cues are removed. However, long-term administration of stimulants, such as PPARγ and ß-adrenergic receptor agonists, is unsuitable due to various side effects. Here, we reported that PPARα pharmacological activation was the preferred target for maintaining induced beige adipocytes. Pemafibrate used in clinical practice for dyslipidemia was developed as a selective PPARα modulator (SPPARMα). Pemafibrate administration regulated the thermogenic capacity of induced beige adipocytes, repressed body weight gain, and ameliorated impaired glucose tolerance in diet-induced obese mouse models. The transcriptome analysis revealed that the E-twenty-six transcription factor ELK1 acted as a cofactor of PPARα. ELK1 was mobilized to the Ucp1 transcription regulatory region with PPARα and modulated its expression by pemafibrate. These results suggest that selective activation of PPARα by pemafibrate is advantageous to maintain the function of beige adipocytes.

10.
Nat Commun ; 14(1): 1979, 2023 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031220

RESUMO

Changes in the transcriptional machinery cause aberrant self-renewal of non-stem hematopoietic progenitors. AF10 fusions, such as CALM-AF10, are generated via chromosomal translocations, causing malignant leukemia. In this study, we demonstrate that AF10 fusion proteins cause aberrant self-renewal via ENL, which binds to MOZ/MORF lysine acetyltransferases (KATs). The interaction of ENL with MOZ, via its YEATS domain, is critical for CALM-AF10-mediated leukemic transformation. The MOZ/ENL complex recruits DOT1L/AF10 fusion complexes and maintains their chromatin retention via KAT activity. Therefore, inhibitors of MOZ/MORF KATs directly suppress the functions of AF10 fusion proteins, thereby exhibiting strong antitumor effects on AF10 translocation-induced leukemia. Combinatorial inhibition of MOZ/MORF and DOT1L cooperatively induces differentiation of CALM-AF10-leukemia cells. These results reveal roles for the MOZ/ENL complex as an essential recruiting factor of the AF10 fusion/DOT1L complex, providing a rationale for using MOZ/MORF KAT inhibitors in AF10 translocation-induced leukemia.


Assuntos
Leucemia , Humanos , Leucemia/patologia , Proteína de Leucina Linfoide-Mieloide/genética , Domínios Proteicos , Cromatina , Translocação Genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo
11.
J Exp Med ; 220(7)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37071125

RESUMO

Aberrant innate immune signaling in myelodysplastic syndrome (MDS) hematopoietic stem/progenitor cells (HSPCs) has been implicated as a driver of the development of MDS. We herein demonstrated that a prior stimulation with bacterial and viral products followed by loss of the Tet2 gene facilitated the development of MDS via up-regulating the target genes of the Elf1 transcription factor and remodeling the epigenome in hematopoietic stem cells (HSCs) in a manner that was dependent on Polo-like kinases (Plk) downstream of Tlr3/4-Trif signaling but did not increase genomic mutations. The pharmacological inhibition of Plk function or the knockdown of Elf1 expression was sufficient to prevent the epigenetic remodeling in HSCs and diminish the enhanced clonogenicity and the impaired erythropoiesis. Moreover, this Elf1-target signature was significantly enriched in MDS HSPCs in humans. Therefore, prior infection stress and the acquisition of a driver mutation remodeled the transcriptional and epigenetic landscapes and cellular functions in HSCs via the Trif-Plk-Elf1 axis, which promoted the development of MDS.


Assuntos
Dioxigenases , Síndromes Mielodisplásicas , Humanos , Células-Tronco Hematopoéticas/metabolismo , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo
12.
Int J Hematol ; 117(6): 876-888, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36780110

RESUMO

DDX41 mutation has been observed in myeloid malignancies including myelodysplastic syndromes and acute myeloid leukemia, but the underlying causative mechanisms of these diseases have not been fully elucidated. The DDX41 protein is an ATP-dependent RNA helicase with roles in RNA metabolism. We previously showed that DDX41 is involved in ribosome biogenesis by promoting the processing of newly transcribed pre-ribosomal RNA. To build on this finding, in this study, we leveraged ribosome profiling technology to investigate the involvement of DDX41 in translation. We found that DDX41 knockdown resulted in both translationally increased and decreased transcripts. Both gene set enrichment analysis and gene ontology analysis indicated that ribosome-associated genes were translationally promoted after DDX41 knockdown, in part because these transcripts had significantly shorter transcript length and higher transcriptional and translational levels. In addition, we found that transcripts with 5'-terminal oligopyrimidine motifs tended to be translationally upregulated when the DDX41 level was low. Our data suggest that a translationally regulated feedback mechanism involving DDX41 may exist for ribosome biogenesis.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Transtornos Mieloproliferativos , Humanos , Perfil de Ribossomos , RNA Helicases DEAD-box/genética , Síndromes Mielodisplásicas/genética , Transtornos Mieloproliferativos/genética , Leucemia Mieloide Aguda/genética
13.
Nat Commun ; 14(1): 697, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36754959

RESUMO

Human acetyltransferases MOZ and MORF are implicated in chromosomal translocations associated with aggressive leukemias. Oncogenic translocations involve the far amino terminus of MOZ/MORF, the function of which remains unclear. Here, we identified and characterized two structured winged helix (WH) domains, WH1 and WH2, in MORF and MOZ. WHs bind DNA in a cooperative manner, with WH1 specifically recognizing unmethylated CpG sequences. Structural and genomic analyses show that the DNA binding function of WHs targets MORF/MOZ to gene promoters, stimulating transcription and H3K23 acetylation, and WH1 recruits oncogenic fusions to HOXA genes that trigger leukemogenesis. Cryo-EM, NMR, mass spectrometry and mutagenesis studies provide mechanistic insight into the DNA-binding mechanism, which includes the association of WH1 with the CpG-containing linker DNA and binding of WH2 to the dyad of the nucleosome. The discovery of WHs in MORF and MOZ and their DNA binding functions could open an avenue in developing therapeutics to treat diseases associated with aberrant MOZ/MORF acetyltransferase activities.


Assuntos
Acetiltransferases , Histona Acetiltransferases , Leucemia , Humanos , Acetilação , Acetiltransferases/metabolismo , Ilhas de CpG/genética , Histona Acetiltransferases/metabolismo , Leucemia/genética , Translocação Genética
15.
Leukemia ; 36(11): 2605-2620, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36229594

RESUMO

Myeloid malignancies with DDX41 mutations are often associated with bone marrow failure and cytopenia before overt disease manifestation. However, the mechanisms underlying these specific conditions remain elusive. Here, we demonstrate that loss of DDX41 function impairs efficient RNA splicing, resulting in DNA replication stress with excess R-loop formation. Mechanistically, DDX41 binds to the 5' splice site (5'SS) of coding RNA and coordinates RNA splicing and transcriptional elongation; loss of DDX41 prevents splicing-coupled transient pausing of RNA polymerase II at 5'SS, causing aberrant R-loop formation and transcription-replication collisions. Although the degree of DNA replication stress acquired in S phase is small, cells undergo mitosis with under-replicated DNA being remained, resulting in micronuclei formation and significant DNA damage, thus leading to impaired cell proliferation and genomic instability. These processes may be responsible for disease phenotypes associated with DDX41 mutations.


Assuntos
Sítios de Splice de RNA , Splicing de RNA , Linhagem Celular , Splicing de RNA/genética , Mutação , Replicação do DNA
16.
Nat Commun ; 13(1): 4501, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042201

RESUMO

KMT2A-rearranged infant acute lymphoblastic leukemia (ALL) represents the most refractory type of childhood leukemia. To uncover the molecular heterogeneity of this disease, we perform RNA sequencing, methylation array analysis, whole exome and targeted deep sequencing on 84 infants with KMT2A-rearranged leukemia. Our multi-omics clustering followed by single-sample and single-cell inference of hematopoietic differentiation establishes five robust integrative clusters (ICs) with different master transcription factors, fusion partners and corresponding stages of B-lymphopoietic and early hemato-endothelial development: IRX-type differentiated (IC1), IRX-type undifferentiated (IC2), HOXA-type MLLT1 (IC3), HOXA-type MLLT3 (IC4), and HOXA-type AFF1 (IC5). Importantly, our deep mutational analysis reveals that the number of RAS pathway mutations predicts prognosis and that the most refractory subgroup of IC2 possesses 100% frequency and the heaviest burden of RAS pathway mutations. Our findings highlight the previously under-appreciated intra- and inter-patient heterogeneity of KMT2A-rearranged infant ALL and provide a rationale for the future development of genomics-guided risk stratification and individualized therapy.


Assuntos
Histona-Lisina N-Metiltransferase/genética , Proteína de Leucina Linfoide-Mieloide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras , Fusão Gênica , Humanos , Lactente , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Fatores de Transcrição/genética
17.
Proc Natl Acad Sci U S A ; 119(33): e2204338119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939709

RESUMO

Despite the recent discovery of tissue regeneration enhancers in highly regenerative animals, upstream and downstream genetic programs connected by these enhancers still remain unclear. Here, we performed a genome-wide analysis of enhancers and associated genes in regenerating nephric tubules of Xenopus laevis. Putative enhancers were identified using assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq) analyses. Their target genes were predicted based on their proximity to enhancers on genomic DNA and consistency of their transcriptome profiles to ATAC-seq/ChIP-seq profiles of the enhancers. Motif enrichment analysis identified the central role of Krüppel-like factors (Klf) in the enhancer. Klf15, a member of the Klf family, directly binds enhancers and stimulates expression of regenerative genes, including adrenoreceptor alpha 1A (adra1a), whereas inhibition of Klf15 activity results in failure of nephric tubule regeneration. Moreover, pharmacological inhibition of Adra1a-signaling suppresses nephric tubule regeneration, while its activation promotes nephric tubule regeneration and restores organ size. These results indicate that Klf15-dependent adrenergic receptor signaling through regeneration enhancers plays a central role in the genetic network for kidney regeneration.


Assuntos
Elementos Facilitadores Genéticos , Túbulos Renais , Fatores de Transcrição Kruppel-Like , Receptores Adrenérgicos , Regeneração , Animais , Cromatina/metabolismo , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Túbulos Renais/fisiologia , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Receptores Adrenérgicos/metabolismo , Regeneração/genética , Xenopus laevis
18.
Urol Oncol ; 40(10): 456.e9-456.e18, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35918249

RESUMO

BACKGROUND: Histologic tumor necrosis (TN) is a well-established independent prognostic indicator in patients treated surgically for clear cell renal cell carcinoma (ccRCC). However, the precise mechanisms by which TN alters disease progression remain unknown. The DEAD-box protein DDX41, a member of a large family of helicases, has been characterized as a pattern recognition receptor against an array of double-stranded (ds)DNA produced from bacteria, dsDNA viruses, and nearby cells that have released dsDNA fragments through necrosis. We hypothesized that DDX41 expression may be upregulated in ccRCC with TN, leading to worse prognosis. METHODS: Relationship between the presence of TN and DDX41 expression were examined using The Cancer Genome Atlas data sets or using ccRCC samples in our institution. Further, the molecular functions of DDX41 were investigated with human ccRCC cells. RESULTS: The presence of TN was significantly associated with the upregulation of mRNA and protein expression of DDX41 in the 2different patient cohorts with ccRCC. In addition, the mRNA and protein expression levels of DDX41 revealed a worse prognosis. In vitro analyses with ccRCC cells revealed that DDX41 expression promotes tumor-promoting activity. Furthermore, VHL loss, 1of the most common features in ccRCC, was shown to play an extremely important role in increasing the expression of the CXCL family in DDX41-expressing ccRCC, leading to the acquisition of a worse malignant phenotype. CONCLUSIONS: DDX41 expression is associated with TN in ccRCC and leads to a worse prognosis in cooperation with VHL loss.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/patologia , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/patologia , Necrose/genética , Prognóstico , RNA Mensageiro/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
19.
Nat Commun ; 13(1): 3464, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710642

RESUMO

Chromosomal backgrounds of cancerous mutations still remain elusive. Here, we conduct the phasing analysis of non-small cell lung cancer specimens of 20 Japanese patients. By the combinatory use of short and long read sequencing data, we obtain long phased blocks of 834 kb in N50 length with >99% concordance rate. By analyzing the obtained phasing information, we reveal that several cancer genomes harbor regions in which mutations are unevenly distributed to either of two haplotypes. Large-scale chromosomal rearrangement events, which resemble chromothripsis events but have smaller scales, occur on only one chromosome, and these events account for the observed biased distributions. Interestingly, the events are characteristic of EGFR mutation-positive lung adenocarcinomas. Further integration of long read epigenomic and transcriptomic data reveal that haploid chromosomes are not always at equivalent transcriptomic/epigenomic conditions. Distinct chromosomal backgrounds are responsible for later cancerous aberrations in a haplotype-specific manner.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/genética , Genoma Humano/genética , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Pulmonares/genética , Mutação , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
20.
Blood ; 140(8): 875-888, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35709354

RESUMO

Detailed genomic and epigenomic analyses of MECOM (the MDS1 and EVI1 complex locus) have revealed that inversion or translocation of chromosome 3 drives inv(3)/t(3;3) myeloid leukemias via structural rearrangement of an enhancer that upregulates transcription of EVI1. Here, we identify a novel, previously unannotated oncogenic RNA-splicing derived isoform of EVI1 that is frequently present in inv(3)/t(3;3) acute myeloid leukemia (AML) and directly contributes to leukemic transformation. This EVI1 isoform is generated by oncogenic mutations in the core RNA splicing factor SF3B1, which is mutated in >30% of inv(3)/t(3;3) myeloid neoplasm patients and thereby represents the single most commonly cooccurring genomic alteration in inv(3)/t(3;3) patients. SF3B1 mutations are statistically uniquely enriched in inv(3)/t(3;3) myeloid neoplasm patients and patient-derived cell lines compared with other forms of AML and promote mis-splicing of EVI1 generating an in-frame insertion of 6 amino acids at the 3' end of the second zinc finger domain of EVI1. Expression of this EVI1 splice variant enhanced the self-renewal of hematopoietic stem cells, and introduction of mutant SF3B1 in mice bearing the humanized inv(3)(q21q26) allele resulted in generation of this novel EVI1 isoform in mice and hastened leukemogenesis in vivo. The mutant SF3B1 spliceosome depends upon an exonic splicing enhancer within EVI1 exon 13 to promote usage of a cryptic branch point and aberrant 3' splice site within intron 12 resulting in the generation of this isoform. These data provide a mechanistic basis for the frequent cooccurrence of SF3B1 mutations as well as new insights into the pathogenesis of myeloid leukemias harboring inv(3)/t(3;3).


Assuntos
Leucemia Mieloide Aguda , Proto-Oncogenes , Animais , Inversão Cromossômica , Cromossomos Humanos Par 3/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Leucemia Mieloide Aguda/patologia , Proteína do Locus do Complexo MDS1 e EVI1/genética , Camundongos , Proto-Oncogenes/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...