Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nihon Yakurigaku Zasshi ; 158(4): 304-307, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-37394549

RESUMO

As the brain is a prime immune privileged organ, immune responses in it were not studied as intensively as other peripheral organs in the past. However, the brain is studded with immune cells called microglia, which play important roles particularly in diseased conditions. In addition, from recent descriptive works, we have learned a lot about immune cells in neighboring tissues. Recent progress has rather made it clearer that the immune responses in and around the brain are complicated reactions with both positive and negative effects. And we still have not identified the way(s) we should pursue for clinical applications. Here we introduce microglia and macrophages in the steady state. We also discuss their roles in stroke, a major cause of death and disability in Japan, and Alzheimer's disease, which account for 60 to 70% of dementia.


Assuntos
Doença de Alzheimer , Acidente Vascular Cerebral , Humanos , Microglia , Macrófagos/fisiologia , Encéfalo , Doença de Alzheimer/etiologia
2.
Inflamm Regen ; 43(1): 20, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922861

RESUMO

BACKGROUND: Alzheimer's disease (AD) is one of the neurodegenerative diseases and characterized by the appearance and accumulation of amyloid-ß (Aß) aggregates and phosphorylated tau with aging. The aggregation of Aß, which is the main component of senile plaques, is closely associated with disease progression. AppNL-G-F mice, a mouse model of AD, have three familial AD mutations in the amyloid-ß precursor gene and exhibit age-dependent AD-like symptoms and pathology. Gut-brain interactions have attracted considerable attention and inflammatory bowel disease (IBD) has been associated with a higher risk of dementia, especially AD, in humans. However, the underlying mechanisms and the effects of intestinal inflammation on the brain in AD remain largely unknown. Therefore, we aimed to investigate the effects of intestinal inflammation on AD pathogenesis. METHODS: Wild-type and AppNL-G-F mice at three months of age were fed with water containing 2% dextran sulfate sodium (DSS) to induce colitis. Immune cells in the brain were analyzed using single-cell RNA sequencing (scRNA-seq) analysis, and the aggregation of Aß protein in the brain was analyzed via immunohistochemistry. RESULTS: An increase in aggregated Aß was observed in the brains of AppNL-G-F mice with acute intestinal inflammation. Detailed scRNA-seq analysis of immune cells in the brain showed that neutrophils in the brain increased after acute enteritis. Eliminating neutrophils by antibodies suppressed the accumulation of Aß, which increased because of intestinal inflammation. CONCLUSION: These results suggest that neutrophils infiltrate the AD brain parenchyma when acute colitis occurs, and this infiltration is significantly related to disease progression. Therefore, we propose that neutrophil-targeted therapies could reduce Aß accumulation observed in early AD and prevent the increased risk of AD due to colitis.

3.
J Biochem ; 173(3): 145-151, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36722182

RESUMO

Immune reactions in the brain, the most complex organ that directly or indirectly regulates almost every part of the body and its actions, need to be tightly regulated. Recent findings in the field of neuroimmunology have enhanced our understanding of immune cells not only inside the brain but also in adjacent tissues. Multiple types of immune cells exist and are active in neighboring border tissues, even in the steady state. In addition, advances in technology have allowed researchers to characterize a broad range of cell types, including stromal cells that support immune reactions. This review presents a short overview of the roles of the immune system in the brain during health and disease, with focus on adaptive immunity and anatomical sites of action. We also discuss potential roles of stromal cells.


Assuntos
Imunidade Adaptativa , Encéfalo
4.
Science ; 373(6553)2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34083447

RESUMO

The meninges are a membranous structure enveloping the central nervous system (CNS) that host a rich repertoire of immune cells mediating CNS immune surveillance. Here, we report that the mouse meninges contain a pool of monocytes and neutrophils supplied not from the blood but by adjacent skull and vertebral bone marrow. Under pathological conditions, including spinal cord injury and neuroinflammation, CNS-infiltrating myeloid cells can originate from brain borders and display transcriptional signatures distinct from their blood-derived counterparts. Thus, CNS borders are populated by myeloid cells from adjacent bone marrow niches, strategically placed to supply innate immune cells under homeostatic and pathological conditions. These findings call for a reinterpretation of immune-cell infiltration into the CNS during injury and autoimmunity and may inform future therapeutic approaches that harness meningeal immune cells.


Assuntos
Células da Medula Óssea/fisiologia , Doenças do Sistema Nervoso Central/imunologia , Sistema Nervoso Central/imunologia , Meninges/imunologia , Células Mieloides/fisiologia , Crânio/anatomia & histologia , Coluna Vertebral/anatomia & histologia , Animais , Medula Óssea/fisiologia , Encéfalo/citologia , Encéfalo/imunologia , Encéfalo/fisiologia , Movimento Celular , Sistema Nervoso Central/citologia , Doenças do Sistema Nervoso Central/patologia , Dura-Máter/citologia , Dura-Máter/imunologia , Dura-Máter/fisiologia , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Homeostase , Meninges/citologia , Meninges/fisiologia , Camundongos , Monócitos/fisiologia , Neutrófilos/fisiologia , Medula Espinal/citologia , Medula Espinal/imunologia , Medula Espinal/fisiologia , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/patologia
5.
Cell ; 184(4): 1000-1016.e27, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33508229

RESUMO

Despite the established dogma of central nervous system (CNS) immune privilege, neuroimmune interactions play an active role in diverse neurological disorders. However, the precise mechanisms underlying CNS immune surveillance remain elusive; particularly, the anatomical sites where peripheral adaptive immunity can sample CNS-derived antigens and the cellular and molecular mediators orchestrating this surveillance. Here, we demonstrate that CNS-derived antigens in the cerebrospinal fluid (CSF) accumulate around the dural sinuses, are captured by local antigen-presenting cells, and are presented to patrolling T cells. This surveillance is enabled by endothelial and mural cells forming the sinus stromal niche. T cell recognition of CSF-derived antigens at this site promoted tissue resident phenotypes and effector functions within the dural meninges. These findings highlight the critical role of dural sinuses as a neuroimmune interface, where brain antigens are surveyed under steady-state conditions, and shed light on age-related dysfunction and neuroinflammatory attack in animal models of multiple sclerosis.


Assuntos
Cavidades Cranianas/imunologia , Cavidades Cranianas/fisiologia , Dura-Máter/imunologia , Dura-Máter/fisiologia , Animais , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígenos/líquido cefalorraquidiano , Senescência Celular , Quimiocina CXCL12/farmacologia , Dura-Máter/irrigação sanguínea , Feminino , Homeostase , Humanos , Imunidade , Masculino , Camundongos Endogâmicos C57BL , Fenótipo , Células Estromais/citologia , Linfócitos T/citologia
7.
Nat Microbiol ; 4(3): 492-503, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30643240

RESUMO

Primary sclerosing cholangitis (PSC) is a chronic inflammatory liver disease and its frequent complication with ulcerative colitis highlights the pathogenic role of epithelial barrier dysfunction. Intestinal barrier dysfunction has been implicated in the pathogenesis of PSC, yet its underlying mechanism remains unknown. Here, we identify Klebsiella pneumonia in the microbiota of patients with PSC and demonstrate that K. pneumoniae disrupts the epithelial barrier to initiate bacterial translocation and liver inflammatory responses. Gnotobiotic mice inoculated with PSC-derived microbiota exhibited T helper 17 (TH17) cell responses in the liver and increased susceptibility to hepatobiliary injuries. Bacterial culture of mesenteric lymph nodes in these mice isolated K. pneumoniae, Proteus mirabilis and Enterococcus gallinarum, which were prevalently detected in patients with PSC. A bacterial-organoid co-culture system visualized the epithelial-damaging effect of PSC-derived K. pneumoniae that was associated with bacterial translocation and susceptibility to TH17-mediated hepatobiliary injuries. We also show that antibiotic treatment ameliorated the TH17 immune response induced by PSC-derived microbiota. These results highlight the role of pathobionts in intestinal barrier dysfunction and liver inflammation, providing insights into therapeutic strategies for PSC.


Assuntos
Colangite Esclerosante/imunologia , Microbioma Gastrointestinal , Intestinos/patologia , Klebsiella pneumoniae/patogenicidade , Fígado/imunologia , Células Th17/imunologia , Adulto , Idoso , Animais , Translocação Bacteriana , Colangite Esclerosante/microbiologia , Colite Ulcerativa/complicações , Enterococcus/isolamento & purificação , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Feminino , Vida Livre de Germes , Humanos , Intestinos/imunologia , Klebsiella pneumoniae/isolamento & purificação , Fígado/patologia , Linfonodos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Organoides/microbiologia , Proteus mirabilis/isolamento & purificação
8.
Cell Rep ; 24(6): 1627-1638.e6, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30089271

RESUMO

Regulatory T (Treg) cells develop from a self-reactive, CD4-single positive (CD4SP) precursor cell pool. Thus, Treg-fated developing thymocytes are expected to possess the potential to generate pathogenic self-reactive cells. However, no such pathogenic conversion has been observed, indicating mechanisms of defense to prevent such a deleterious event. Here, we show that, after the initial developmental phase, the Nr4a family of nuclear receptors promotes the development of Treg cells by cooperating with other Treg cell developmental machineries, as well as by forming a reinforcing loop with Foxp3. Nr4a-deficient Treg-fated thymocytes survive and can elicit autoimmunity, highlighting their roles in elimination of developing Treg precursors that fail to complete their development. Our findings reveal that the defective development of Treg-fated thymocytes is a potential route for the generation of pathogenic self-reactive cells, which is normally suppressed by Nr4a factors at both developmental and cell death levels.


Assuntos
Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Diferenciação Celular , Humanos , Camundongos , Transfecção
9.
Int Immunol ; 30(8): 357-373, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29982622

RESUMO

T helper type 1 (Th1) cells form one of the most stable CD4 T-cell subsets, and direct conversion of fully differentiated Th1 to regulatory T (Treg) cells has been poorly investigated. Here, we established a culture method for inducing Foxp3 from Th1 cells of mice and humans. This is achieved simply by resting Th1 cells without T-cell receptor ligation before stimulation in the presence of transforming growth factor-beta (TGF-ß). We named the resulting Th1-derived Foxp3+ cells Th1reg cells. Mouse Th1reg cells showed an inducible Treg-like phenotype and suppressive ability both in vitro and in vivo. Th1reg cells could also be induced from in vivo-developed mouse Th1 cells. Unexpectedly, the resting process enabled Foxp3 expression not through epigenetic changes at the locus, but through metabolic change resulting from reduced mammalian target of rapamycin complex 1 (mTORC1) activity. mTORC1 suppressed TGF-ß-induced phosphorylation of Smad2/3 in Th1 cells, which was restored in rested cells. Our study warrants future research aiming at development of immunotherapy with Th1reg cells.


Assuntos
Reprogramação Celular , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/metabolismo , Células Th1/citologia , Células Th1/metabolismo , Adulto , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/imunologia , Células Th1/imunologia
10.
Epigenetics Chromatin ; 10: 24, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28503202

RESUMO

BACKGROUND: Epigenome editing is expected to manipulate transcription and cell fates and to elucidate the gene expression mechanisms in various cell types. For functional epigenome editing, assessing the chromatin context-dependent activity of artificial epigenetic modifier is required. RESULTS: In this study, we applied clustered regularly interspaced short palindromic repeats (CRISPR)-dCas9-based epigenome editing to mouse primary T cells, focusing on the Forkhead box P3 (Foxp3) gene locus, a master transcription factor of regulatory T cells (Tregs). The Foxp3 gene locus is regulated by combinatorial epigenetic modifications, which determine the Foxp3 expression. Foxp3 expression is unstable in transforming growth factor beta (TGF-ß)-induced Tregs (iTregs), while stable in thymus-derived Tregs (tTregs). To stabilize Foxp3 expression in iTregs, we introduced dCas9-TET1CD (dCas9 fused to the catalytic domain (CD) of ten-eleven translocation dioxygenase 1 (TET1), methylcytosine dioxygenase) and dCas9-p300CD (dCas9 fused to the CD of p300, histone acetyltransferase) with guide RNAs (gRNAs) targeted to the Foxp3 gene locus. Although dCas9-TET1CD induced partial demethylation in enhancer region called conserved non-coding DNA sequences 2 (CNS2), robust Foxp3 stabilization was not observed. In contrast, dCas9-p300CD targeted to the promoter locus partly maintained Foxp3 transcription in cultured and primary T cells even under inflammatory conditions in vitro. Furthermore, dCas9-p300CD promoted expression of Treg signature genes and enhanced suppression activity in vitro. CONCLUSIONS: Our results showed that artificial epigenome editing modified the epigenetic status and gene expression of the targeted loci, and engineered cellular functions in conjunction with endogenous epigenetic modification, suggesting effective usage of these technologies, which help elucidate the relationship between chromatin states and gene expression.


Assuntos
Metilação de DNA/genética , Epigenômica , Fatores de Transcrição Forkhead/biossíntese , Linfócitos T Reguladores/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Proteínas de Ligação a DNA/genética , Proteína p300 Associada a E1A/genética , Fatores de Transcrição Forkhead/genética , Edição de Genes , Regulação da Expressão Gênica/genética , Camundongos , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/genética , Fator de Crescimento Transformador beta/genética
11.
Nat Commun ; 8: 15338, 2017 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-28530241

RESUMO

Adoptive T-cell immunotherapy is a promising approach to cancer therapy. Stem cell memory T (TSCM) cells have been proposed as a class of long-lived and highly proliferative memory T cells. CD8+ TSCM cells can be generated in vitro from naive CD8+ T cells via Wnt signalling; however, methods do not yet exist for inducing TSCM cells from activated or memory T cells. Here, we show a strategy for generating TSCM-like cells in vitro (iTSCM cells) from activated CD4+ and CD8+ T cells in mice and humans by coculturing with stromal cells that express a Notch ligand. iTSCM cells lose PD-1 and CTLA-4 expression, and produce a large number of tumour-specific effector cells after restimulation. This method could therefore be used to generate antigen-specific effector T cells for adoptive immunotherapy.


Assuntos
Imunoterapia Adotiva/métodos , Ativação Linfocitária , Receptores Notch/metabolismo , Linfócitos T/citologia , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Antígeno CTLA-4/metabolismo , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Separação Celular , Técnicas de Cocultura , Citometria de Fluxo , Homeostase , Humanos , Memória Imunológica , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Receptor de Morte Celular Programada 1/metabolismo , Células-Tronco/citologia
12.
Int Immunol ; 29(2): 59-70, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28338748

RESUMO

Damage-associated molecular patterns (DAMPs) have been implicated in sterile inflammation in various tissue injuries. High-mobility group box 1 (HMGB1) is a representative DAMP, and has been shown to transmit signals through receptors for advanced glycation end products (RAGEs) and TLRs, including TLR2 and TLR4. HMGB1 does not, however, bind to TLRs with high affinity; therefore, the mechanism of HMGB1-mediated TLR activation remains unclear. In this study, we found that fluorescently labeled HMGB1 was efficiently internalized into macrophages through class A scavenger receptors. Although both M1- and M2-type macrophages internalized HMGB1, only M1-type macrophages secreted cytokines in response to HMGB1. The pan-class A scavenger receptor competitive inhibitor, maleylated bovine serum albumin (M-BSA), inhibited HMGB1 internalization and reduced cytokine production from macrophages in response to HMGB1 but not to LPS. The C-terminal acidic domain of HMGB1 is responsible for scavenger receptor-mediated internalization and cytokine production. HMGB1 and TLR4 co-localized in macrophages, and this interaction was disrupted by M-BSA, suggesting that class A scavenger receptors function as co-receptors of HMGB1 for TLR activation. M-BSA ameliorated LPS-induced sepsis and dextran sulfate sodium (DSS)-induced colitis models in which HMGB1 has been shown to play progressive roles. These data suggest that scavenger receptors function as co-receptors along with TLRs for HMGB1 in M1-type inflammatory macrophages.


Assuntos
Colite/imunologia , Macrófagos/fisiologia , Receptores Imunológicos/metabolismo , Receptores Depuradores Classe A/metabolismo , Sepse/imunologia , Animais , Bovinos , Diferenciação Celular , Células Cultivadas , Colite/induzido quimicamente , Citocinas/metabolismo , Proteína HMGB1/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Receptores Imunológicos/genética , Receptores Depuradores Classe A/genética , Sepse/induzido quimicamente , Soroalbumina Bovina/administração & dosagem , Transdução de Sinais , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
13.
Cancer Sci ; 108(4): 574-580, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28188673

RESUMO

Inhibition of immune checkpoint molecules, PD-1 and CTLA4, has been shown to be a promising cancer treatment. PD-1 and CTLA4 inhibit TCR and co-stimulatory signals. The third T cell activation signal represents the signals from the cytokine receptors. The cytokine interferon-γ (IFNγ) plays an important role in anti-tumor immunity by activating cytotoxic T cells (CTLs). Most cytokines use the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, and the suppressors of cytokine signaling (SOCS) family of proteins are major negative regulators of the JAK/STAT pathway. Among SOCS proteins, CIS, SOCS1, and SOCS3 proteins can be considered the third immunocheckpoint molecules since they regulate cytokine signals that control the polarization of CD4+ T cells and the maturation of CD8+ T cells. This review summarizes recent progress on CIS, SOCS1, and SOCS3 in terms of their anti-tumor immunity and potential applications.


Assuntos
Imunoterapia/métodos , Neoplasias/terapia , Proteína 1 Supressora da Sinalização de Citocina/imunologia , Proteína 3 Supressora da Sinalização de Citocinas/imunologia , Proteínas Supressoras da Sinalização de Citocina/imunologia , Animais , Humanos , Modelos Imunológicos , Neoplasias/imunologia , Neoplasias/metabolismo , Transdução de Sinais/imunologia , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
14.
Trends Immunol ; 37(11): 803-811, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27623114

RESUMO

Regulatory T (Treg) cells, as central mediators of immune suppression, play crucial roles in many facets of immune systems. The transcription factor Foxp3 has been characterized as a master regulator of Tregs, and is induced during their thymic development. Foxp3+ Tregs can also be generated from naïve T cells after stimulation in the presence of TGF-ß and IL-2; the resulting cells are called induced Tregs (iTregs) when generated in vitro, or peripheral Tregs (pTregs) when generated in vivo. Compared to tTregs, iTregs have been shown to be unstable, and attempts to generate stable iTregs have been made for clinical applications. We review here the current knowledge on the development of pTregs, iTregs, and their roles and applications.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Imunoterapia Adotiva/métodos , Subpopulações de Linfócitos T/fisiologia , Linfócitos T Reguladores/fisiologia , Timo/imunologia , Animais , Diferenciação Celular , Metilação de DNA , Fatores de Transcrição Forkhead/genética , Humanos , Interleucina-2/metabolismo , Ativação Linfocitária , Linfócitos T Reguladores/transplante , Fator de Crescimento Transformador beta/metabolismo
15.
J Biol Chem ; 291(7): 3124-34, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26635368

RESUMO

Constitutional heterozygous loss-of-function mutations in the SPRED1 gene cause a phenotype known as Legius syndrome, which consists of symptoms of multiple café-au-lait macules, axillary freckling, learning disabilities, and macrocephaly. Legius syndrome resembles a mild neurofibromatosis type 1 (NF1) phenotype. It has been demonstrated that SPRED1 functions as a negative regulator of the Ras-ERK pathway and interacts with neurofibromin, the NF1 gene product. However, the molecular details of this interaction and the effects of the mutations identified in Legius syndrome and NF1 on this interaction have not yet been investigated. In this study, using a yeast two-hybrid system and an immunoprecipitation assay in HEK293 cells, we found that the SPRED1 EVH1 domain interacts with the N-terminal 16 amino acids and the C-terminal 20 amino acids of the GTPase-activating protein (GAP)-related domain (GRD) of neurofibromin, which form two crossing α-helix coils outside the GAP domain. These regions have been shown to be dispensable for GAP activity and are not present in p120(GAP). Several mutations in these N- and C-terminal regions of the GRD in NF1 patients and pathogenic missense mutations in the EVH1 domain of SPRED1 in Legius syndrome reduced the binding affinity between the EVH1 domain and the GRD. EVH1 domain mutations with reduced binding to the GRD also disrupted the ERK suppression activity of SPRED1. These data clearly demonstrate that SPRED1 inhibits the Ras-ERK pathway by recruiting neurofibromin to Ras through the EVH1-GRD interaction, and this study also provides molecular basis for the pathogenic mutations of NF1 and Legius syndrome.


Assuntos
Manchas Café com Leite/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Modelos Moleculares , Mutação de Sentido Incorreto , Neurofibromatose 1/genética , Neurofibromina 1/metabolismo , Mutação Puntual , Proteínas Adaptadoras de Transdução de Sinal , Sistema A de Transporte de Aminoácidos , Manchas Café com Leite/metabolismo , Manchas Café com Leite/fisiopatologia , Fator de Crescimento Epidérmico/metabolismo , Feminino , Genes Reporter , Estudos de Associação Genética , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Cinética , Sistema de Sinalização das MAP Quinases , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/genética , Neurofibromatose 1/metabolismo , Neurofibromatose 1/fisiopatologia , Neurofibromina 1/química , Neurofibromina 1/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas p21(ras)/agonistas , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
16.
Biochem Biophys Res Commun ; 468(4): 766-73, 2015 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-26562526

RESUMO

Th17 cells, which have been implicated in autoimmune diseases including rheumatoid arthritis (RA), require the JAK-STAT3 pathway for their differentiation and functions. Recently, JAK inhibitors have been developed as a therapeutic drug for RA. However, the current JAK inhibitors are not optimized to STAT3 compared with other STATs. In this study, we found a new lead compound of a small molecule JAK-STAT inhibitor, 2-[(3-Carbamoyl-2-thienyl)amino]-2-oxoethyl (2,6-dichlorophenyl)acetate, which inhibits STAT3 as efficiently as other STATs. This compound, named JI069, was selected by STAT3 reporter assay in combination with an in silico docking model. JI069 inhibited gp130 signaling by inducing dissociation between gp130 and JAK1. In HEK293T cells and primary T cells, JI069 suppressed STAT3 activation as efficiently as other STATs, including STAT1, STAT5, and STAT6. JI069 effectively suppressed Th1, Th2, and Th17 differentiation while strongly promoted iTreg differentiation. JI069 suppressed symptoms of the collagen-induced arthritis (CIA) model in mice, and inhibited the cytokine production from T cells as well as the STAT3 phosphorylation of synovial cells. These data suggest that JI069 is a new type of JAK inhibitor which has potential for the treatment of immunological disorders.


Assuntos
Acetatos/administração & dosagem , Artrite/tratamento farmacológico , Artrite/imunologia , Fatores de Transcrição STAT/antagonistas & inibidores , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/patologia , Animais , Artrite/induzido quimicamente , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Linhagem Celular , Colágeno , Citocinas/imunologia , Relação Dose-Resposta a Droga , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição STAT/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Resultado do Tratamento
17.
Immunol Lett ; 168(2): 300-5, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26481266

RESUMO

Conventional dendritic cells (cDCs) present α-galactosylceramide (αGC) to invariant natural killer T (iNKT) cells through CD1d. Among cDC subsets, CD8(+) DCs efficiently induce IFN-γ production in iNKT cells. Using fluorescence-labeled αGC, we showed that CD8(+) DCs incorporated larger amounts of αGC and kept it intact longer than CD8(-) DCs. Histological analyses revealed that Langerin(+)CD8(+) DCs in the splenic marginal zone, which was the unique equipment to capture blood-borne antigens, preferably incorporated αGC, and the depletion of Langerin(+) cells decreased IFN-γ and IL-12 production in response to αGC. Furthermore, splenic Langerin(+)CD8(+) DCs expressed more membrane-bound CXCL16, which possibly anchored iNKT cells in the marginal zone, than CD8(-) DCs. Collectively, it is suggested that the cellular properties and localization of CD8(+) DCs are important for stimulation of iNKT cells by αGC.


Assuntos
Células Dendríticas/imunologia , Fluorescência , Galactosilceramidas/imunologia , Animais , Antígenos de Superfície/imunologia , Antígenos de Superfície/metabolismo , Antígenos CD8/imunologia , Antígenos CD8/metabolismo , Carbocianinas/química , Quimiocina CXCL16 , Quimiocina CXCL6/imunologia , Quimiocina CXCL6/metabolismo , Técnicas de Cocultura , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Citometria de Fluxo , Corantes Fluorescentes/química , Galactosilceramidas/metabolismo , Galactosilceramidas/farmacocinética , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-12/imunologia , Interleucina-12/metabolismo , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Lectinas de Ligação a Manose/imunologia , Lectinas de Ligação a Manose/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Células T Matadoras Naturais/citologia , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Baço/citologia , Baço/imunologia , Baço/metabolismo
18.
Int Immunol ; 24(2): 129-36, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22247226

RESUMO

Sulfatide-reactive type II NKT cells, the so-called non-invariant NKT (non-iNKT) cells, have been shown to counteract invariant NKT (iNKT) cell activity. However, the effects of sulfatide on activation of iNKT cells by α-galactocylceramide (αGC) in the context of CD1d have not been studied in detail. Therefore, we studied the blocking effect of sulfatide on αGC-induced iNKT cell activation by dendritic cells (DCs). Even in the absence of non-iNKT cells, sulfatide inhibited αGC-mediated iNKT cell activation by reducing αGC/CD1d complex formations in a dose-dependent manner. This was also confirmed in a cell-free setting using immobilized CD1d-Ig. Moreover, simultaneous injection of αGC with sulfatide decreased αGC/CD1d complex formations on DCs, accompanied by the reduced CD40L-up-regulation and IFN-γ production by iNKT cells and IL-12p70 production by DCs. However, sulfatide by itself did not interfere with the presentation of MHC class II-mediated antigen presentation to specific T cells. These results demonstrate that sulfatide competes with αGC to be loaded onto CD1d along the endocytic pathway in DCs, thereby inhibiting the iNKT cell response.


Assuntos
Apresentação de Antígeno , Células Dendríticas/efeitos dos fármacos , Galactosilceramidas/metabolismo , Células T Matadoras Naturais/metabolismo , Sulfoglicoesfingolipídeos/farmacologia , Animais , Apresentação de Antígeno/efeitos dos fármacos , Antígenos CD1/metabolismo , Ligante de CD40/genética , Ligante de CD40/metabolismo , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Terapia de Imunossupressão , Interferon gama/genética , Interferon gama/metabolismo , Interleucina-12/genética , Interleucina-12/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/patologia , Ligação Proteica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...