Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(5)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37317107

RESUMO

Immobilized bacterial cells are presently widely used in the development of bacterial preparations for the bioremediation of contaminated environmental objects. Oil hydrocarbons are among the most abundant pollutants. We have previously described a new biocomposite material containing hydrocarbon-oxidizing bacteria (HOB) embedded in silanol-humate gels (SHG) based on humates and aminopropyltriethoxysilane (APTES); high viable cell titer was maintained in this material for at least 12 months. The goal of the work was to describe the ways of long-term HOB survival in SHG and the relevant morphotypes using the techniques of microbiology, instrumental analytical chemistry and biochemistry, and electron microscopy. Bacteria surviving in SHG were characterized by: (1) capacity for rapid reactivation (growth and hydrocarbon oxidation) in fresh medium; (2) ability to synthesize surface-active compounds, which was not observed in the cultures stored without SHG); (3) elevated stress resistance (ability to grow at high Cu2+ and NaCl concentrations); (4) physiological heterogeneity of the populations, which contained the stationary hypometabolic cells, cystlike anabiotic dormant forms (DF), and ultrasmall cells; (5) occurrence of piles in many cells, which were probably used to exchange genetic material; (6) modification of the phase variants spectrum in the population growing after long-term storage in SHG; and (7) oxidation of ethanol and acetate by HOB populations stored in SHG. The combination of the physiological and cytomorphological properties of the cells surviving in SHG for long periods may indicate a new type of long-term bacterial survival, i.e., in a hypometabolic state.

2.
Antonie Van Leeuwenhoek ; 115(6): 801-820, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35435634

RESUMO

In the bottom sediments from a number of the Barents Sea sites, including coastal areas of the Novaya Zemlya, Franz Josef Land, and Svalbard archipelagos, sulphate reduction rates were measured and the phylogenetic composition of sulphate-reducing bacterial (SRB) communities was analysed for the first time. Molecular genetic analysis of the sequences of the 16S rRNA and dsrB genes (the latter encodes the ß-subunit of dissimilatory (bi)sulphite reductase) revealed significant differences in the composition of bacterial communities in different sampling stations and sediment horizons of the Barents Sea depending on the physicochemical conditions. The major bacteria involved in reduction of sulphur compounds in Arctic marine bottom sediments belonged to Desulfobulbaceae, Desulfobacteraceae, Desulfovibrionaceae, Desulfuromonadaceae, and Desulfarculaceae families, as well as to uncultured clades SAR324 and Sva0485. Desulfobulbaceae and Desulfuromonadaceae predominated in the oxidised (Eh = 154-226 mV) upper layers of the sediments (up to 9% and 5.9% from all reads of the 16S rRNA gene sequences in the sample, correspondingly), while in deeper, more reduced layers (Eh = -210 to -105 mV) the share of Desulfobacteraceae in the SRB community was also significant (up to 5%). The highest relative abundance of members of Desulfarculaceae family (3.1%) was revealed in reduced layers of sandy-clayey sediments from the Barents Sea area affected by currents of transformed (mixed, with changed physicochemical characteristics) Atlantic waters.


Assuntos
Desulfovibrio , Sedimentos Geológicos , Bactérias/genética , Desulfovibrio/genética , Sedimentos Geológicos/microbiologia , Humanos , Filogenia , RNA Ribossômico 16S/genética , Sulfatos
3.
Mar Environ Res ; 173: 105533, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34875513

RESUMO

Pockmarks are important "pumps", which are believed to play a significant role in the global methane cycling and harboring a unique assemblage of very diverse prokaryotes. This study reports the results of massive sequencing of the 16S rRNA gene V4 hypervariable regions for the samples from thirteen pockmark horizons (the Baltic Sea) collected at depths from 0 to 280 cm below seafloor (cmbsf) and the rates of microbially mediated anaerobic oxidation of methane (AOM) and sulfate reduction (SR). Altogether, 76 bacterial and 12 archaeal phyla were identified, 23 of which were candidate divisions. Of the total obtained in the pockmark sequences, 84.3% of them were classified as Bacteria and 12.4% as Archaea; 3.3% of the sequences were assigned to unknown operational taxonomic units (OTUs). Members of the phyla Planctomycetota, Chloroflexota, Desulfobacterota, Caldatribacteriota, Acidobacteriota and Proteobacteria predominated across all horizons, comprising 58.5% of the total prokaryotic community. These phyla showed different types of patterns of relative abundance. Analysis of AOM-SR-mediated prokaryotes abundance and biogeochemical measurements revealed that ANME-2a-2b subcluster was predominant in sulfate-rich upper horizons (including sulfate-methane transition zone (SMTZ)) and together with sulfate-reducing bacterial group SEEP-SRB1 had a primary role in AOM coupled to SR. At deeper sulfate-depleted horizons ANME-2a-2b shifted to ANME-1a and ANME-1b which alone mediated AOM or switch to methanogenic metabolism. Shifting of the ANME subclusters depending on depth reflect a tendency for niche separation in these groups. It was shown that the abundance of Caldatribacteriota and organohalide-respiring Dehalococcoidia (Chloroflexota) exhibited a strong correlation with AOM rates. This is the first detailed study of depth profiles of prokaryotic diversity, patterns of relative abundance, and ANME niche separation in the Baltic Sea pockmark microbiomes sheds light on assembly of prokaryotes in a pockmark.


Assuntos
Metano , Microbiota , Anaerobiose , Archaea/genética , Sedimentos Geológicos , Oxirredução , Filogenia , Planctomicetos , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...