Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 542
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(14): 146901, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38640370

RESUMO

Time-resolved multiterahertz (THz) spectroscopy is used to observe an ultrafast, nonthermal electronic phase change in SnSe driven by interband photoexcitation with 1.55 eV pump photons. The transient THz photoconductivity spectrum is found to be Lorentzian-like, indicating charge localization and phase segregation. The rise of photoconductivity is bimodal in nature, with both a fast and slow component due to excitation into multiple bands and subsequent intervalley scattering. The THz conductivity magnitude, dynamics, and spectra show a drastic change in character at a critical excitation fluence of approximately 6 mJ/cm^{2} due to a photoinduced phase segregation and a macroscopic collapse of the band gap.

2.
Science ; 384(6692): 189-193, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38603485

RESUMO

Inverted (pin) perovskite solar cells (PSCs) afford improved operating stability in comparison to their nip counterparts but have lagged in power conversion efficiency (PCE). The energetic losses responsible for this PCE deficit in pin PSCs occur primarily at the interfaces between the perovskite and the charge-transport layers. Additive and surface treatments that use passivating ligands usually bind to a single active binding site: This dense packing of electrically resistive passivants perpendicular to the surface may limit the fill factor in pin PSCs. We identified ligands that bind two neighboring lead(II) ion (Pb2+) defect sites in a planar ligand orientation on the perovskite. We fabricated pin PSCs and report a certified quasi-steady state PCE of 26.15 and 24.74% for 0.05- and 1.04-square centimeter illuminated areas, respectively. The devices retain 95% of their initial PCE after 1200 hours of continuous 1 sun maximum power point operation at 65°C.

3.
J Am Chem Soc ; 146(18): 12620-12635, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38669614

RESUMO

High-entropy semiconductors are now an important class of materials widely investigated for thermoelectric applications. Understanding the impact of chemical and structural heterogeneity on transport properties in these compositionally complex systems is essential for thermoelectric design. In this work, we uncover the polar domain structures in the high-entropy PbGeSnSe1.5Te1.5 system and assess their impact on thermoelectric properties. We found that polar domains induced by crystal symmetry breaking give rise to well-structured alternating strain fields. These fields effectively disrupt phonon propagation and suppress the thermal conductivity. We demonstrate that the polar domain structures can be modulated by tuning crystal symmetry through entropy engineering in PbGeSnAgxSbxSe1.5+xTe1.5+x. Incremental increases in the entropy enhance the crystal symmetry of the system, which suppresses domain formation and loses its efficacy in suppressing phonon propagation. As a result, the room-temperature lattice thermal conductivity increases from κL = 0.63 Wm-1 K-1 (x = 0) to 0.79 Wm-1 K-1 (x = 0.10). In the meantime, the increase in crystal symmetry, however, leads to enhanced valley degeneracy and improves the weighted mobility from µw = 29.6 cm2 V-1 s-1 (x = 0) to 35.8 cm2 V-1 s-1 (x = 0.10). As such, optimal thermoelectric performance can be achieved through entropy engineering by balancing weighted mobility and lattice thermal conductivity. This work, for the first time, studies the impact of polar domain structures on thermoelectric properties, and the developed understanding of the intricate interplay between crystal symmetry, polar domains, and transport properties, along with the impact of entropy control, provides valuable insights into designing GeTe-based high-entropy thermoelectrics.

4.
Inorg Chem ; 63(11): 4915-4924, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38440871

RESUMO

Single-wall nanotubes of isostructural AsPS4-xSex (x = 0, 1) are grown from solid-state reaction of stoichiometric amounts of the elements. The structure of AsPS4 was determined using single-crystal X-ray diffraction and refined in space group P1¯. The infinite, single-walled AsPS4 nanotubes have an outer diameter of ≈1.1 nm and are built of corner-sharing PS4 tetrahedra and AsS3 trigonal pyramids. Each nanotube is nearly hexagonal, but the ≈3.4 Å distance between S atoms on adjacent nanotubes allows them to easily slide past one another, resulting in the loss of long-range order. Substituting S with Se disrupted the crystallization of the nanotubes, resulting in amorphous products that precluded the determination of the structure for AsPS3Se. 31P solid-state NMR spectroscopy indicated a single unique tetrahedral P environment in AsPS4 and five different P environments all with different degrees of Se substitution in AsPS3Se. Optical absorption spectroscopy revealed an energy band gap of 2.7 to 2.4 eV for AsPS4 and AsPS3Se, respectively. Individual AsPS4 microfibers showed a bulk conductivity of 3.2 × 10-6 S/cm and a negative photoconductivity effect under the illumination of light (3.06 eV) in ambient conditions. Thus, intrinsic conductivity originates from hopping through empty trap states along the length of the AsPS4 nanotubes.

5.
ACS Appl Mater Interfaces ; 16(6): 7310-7316, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38317431

RESUMO

Molecular hole-transporting materials (HTMs) having triphenylethylene central core were designed, synthesized, and employed in perovskite solar cell (PSC) devices. The synthesized HTM derivatives were obtained in a two- or three-step synthetic procedure, and their characteristics were analyzed by various thermoanalytical, optical, photophysical, and photovoltaic techniques. The most efficient PSC device recorded a 23.43% power conversion efficiency. Furthermore, the longevity of the device employing V1509 HTM surpassed that of PSC with state-of-art spiro-OMeTAD as the reference HTM.

6.
J Am Chem Soc ; 146(6): 3732-3741, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38301030

RESUMO

Semiconductor nanocrystals (NCs) offer prospective use as active optical elements in photovoltaics, light-emitting diodes, lasers, and photocatalysts due to their tunable optical absorption and emission properties, high stability, and scalable solution processing, as well as compatibility with additive manufacturing routes. Over the course of experiments, during device fabrication, or while in use commercially, these materials are often subjected to intense or prolonged electronic excitation and high carrier densities. The influence of such conditions on ligand integrity and binding remains underexplored. Here, we expose CdSe NCs to laser excitation and monitor changes in oleate that is covalently attached to the NC surface using nuclear magnetic resonance as a function of time and laser intensity. Higher photon doses cause increased rates of ligand loss from the particles, with upward of 50% total ligand desorption measured for the longest, most intense excitation. Surprisingly, for a range of excitation intensities, fragmentation of the oleate is detected and occurs concomitantly with formation of aldehydes, terminal alkenes, H2, and water. After illumination, NC size, shape, and bandgap remain constant although low-energy absorption features (Urbach tails) develop in some samples, indicating formation of substantial trap states. The observed reaction chemistry, which here occurs with low photon to chemical conversion efficiency, suggests that ligand reactivity may require examination for improved NC dispersion stability but can also be manipulated to yield desired photocatalytically accessed chemical species.

7.
Nano Lett ; 24(5): 1531-1538, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38286029

RESUMO

Two-dimensional (2D) van der Waals magnets comprise rich physics that can be exploited for spintronic applications. We investigate the interplay between spin-phonon coupling and spin textures in a 2D van der Waals magnet by combining magneto-Raman spectroscopy with cryogenic Lorentz transmission electron microscopy. We find that when stable skyrmion bubbles are formed in the 2D magnet, a field-dependent Raman shift can be observed, and this shift is absent for the 2D magnet prepared in its ferromagnetic state. Correlating these observations with numerical simulations that take into account field-dependent magnetic textures and spin--phonon coupling in the 2D magnet, we associate the Raman shift to field-induced modulations of the skyrmion bubbles and derive the existence of inhomogeneity in the skyrmion textures over the film thickness.

8.
Nat Mater ; 23(2): 230-236, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38172544

RESUMO

Rhenium chalcohalide cluster compounds are a photoluminescent family of mixed-anion chalcohalide cluster materials. Here we report the new material Rb6Re6S8I8, which crystallizes in the cubic space group Fm[Formula: see text]m and contains isolated [Re6S8I6]4- clusters. Rb6Re6S8I8 has a band gap of 2.06(5) eV and an ionization energy of 5.51(3) eV, and exhibits broad photoluminescence (PL) ranging from 1.01 eV to 2.12 eV. The room-temperature PL exhibits a PL quantum yield of 42.7% and a PL lifetime of 77 µs (99 µs at 77 K). Rb6Re6S8I8 is found to be soluble in multiple polar solvents including N,N-dimethylformamide, which enables solution processing of the material into films with thickness under 150 nm. Light-emitting diodes based on films of Rb6Re6S8I8 were fabricated, demonstrating the potential for this family of materials in optoelectronic devices.

9.
Adv Sci (Weinh) ; 11(9): e2305861, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38111327

RESUMO

Anomalous thermal transport of Cs2 NaYbCl6 double-halide perovskite above room temperature is reported and rationalized. Calculations of phonon dispersion relations and scattering rates up to the fourth order in lattice anharmonicity have been conducted to determine their effective dependence on temperature. These findings show that specific phonon group velocities and lifetimes increase if the temperature is raised above 500 K. This, in combination with anharmonicity, provides the microscopic mechanism responsible for the increase in lattice thermal conductivity at high temperatures, contrary to the predictions of phonon transport theories based on solely cubic anharmonicity. The model accurately and quantitatively reproduces the experimental thermal conductivity data as a function of temperature.

10.
Science ; 382(6672): 810-815, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37972154

RESUMO

Compared with the n-i-p structure, inverted (p-i-n) perovskite solar cells (PSCs) promise increased operating stability, but these photovoltaic cells often exhibit lower power conversion efficiencies (PCEs) because of nonradiative recombination losses, particularly at the perovskite/C60 interface. We passivated surface defects and enabled reflection of minority carriers from the interface into the bulk using two types of functional molecules. We used sulfur-modified methylthio molecules to passivate surface defects and suppress recombination through strong coordination and hydrogen bonding, along with diammonium molecules to repel minority carriers and reduce contact-induced interface recombination achieved through field-effect passivation. This approach led to a fivefold longer carrier lifetime and one-third the photoluminescence quantum yield loss and enabled a certified quasi-steady-state PCE of 25.1% for inverted PSCs with stable operation at 65°C for >2000 hours in ambient air. We also fabricated monolithic all-perovskite tandem solar cells with 28.1% PCE.

11.
Nat Mater ; 22(12): 1507-1514, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37903926

RESUMO

Pseudo-halide (PH) anion engineering has emerged as a surface passivation strategy of interest for perovskite-based optoelectronics; but until now, PH anions have led to insufficient defect passivation and thus to undesired deep impurity states. The size of the chemical space of PH anions (>106 molecules) has so far limited attempts to explore the full family of candidate molecules. We created a machine learning workflow to speed up the discovery process using full-density functional theory calculations for training the model. The physics-informed machine learning model allowed us to pinpoint promising molecules with a head group that prevents lattice distortion and anti-site defect formation, and a tail group optimized for strong attachment to the surface. We identified 15 potential bifunctional PH anions with the ability to passivate both donors and acceptors, and through experimentation, discovered that sodium thioglycolate was the most effective passivant. This strategy resulted in a power-conversion efficiency of 24.56% with a high open-circuit voltage of 1.19 volts (24.04% National Renewable Energy Lab-certified quasi-steady-state) in inverted perovskite solar cells. Encapsulated devices maintained 96% of their initial power-conversion energy during 900 hours of one-sun operation at the maximum power point.

12.
Nature ; 624(7991): 289-294, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37871614

RESUMO

Inverted perovskite solar cells (PSCs) promise enhanced operating stability compared to their normal-structure counterparts1-3. To improve efficiency further, it is crucial to combine effective light management with low interfacial losses4,5. Here we develop a conformal self-assembled monolayer (SAM) as the hole-selective contact on light-managing textured substrates. Molecular dynamics simulations indicate that cluster formation during phosphonic acid adsorption leads to incomplete SAM coverage. We devise a co-adsorbent strategy that disassembles high-order clusters, thus homogenizing the distribution of phosphonic acid molecules, and thereby minimizing interfacial recombination and improving electronic structures. We report a laboratory-measured power conversion efficiency (PCE) of 25.3% and a certified quasi-steady-state PCE of 24.8% for inverted PSCs, with a photocurrent approaching 95% of the Shockley-Queisser maximum. An encapsulated device having a PCE of 24.6% at room temperature retains 95% of its peak performance when stressed at 65 °C and 50% relative humidity following more than 1,000 h of maximum power point tracking under 1 sun illumination. This represents one of the most stable PSCs subjected to accelerated ageing: achieved with a PCE surpassing 24%. The engineering of phosphonic acid adsorption on textured substrates offers a promising avenue for efficient and stable PSCs. It is also anticipated to benefit other optoelectronic devices that require light management.

13.
Inorg Chem ; 62(39): 15971-15982, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37721531

RESUMO

Metal sulfide ion exchange materials (MSIEs) are of interest for nuclear waste remediation applications. We report the high stability of two structurally related metal sulfide ion exchange materials, Na2xMg2y-xSn4-yS8 (Mg-NMS) and Na2SnS3 (Na-NMS), in strongly acid media, in addition to the preparation of Na2xNi2y-xSn4-yS8 (Ni-NMS). Their formation progress during synthesis is studied with in-situ methods, with the target phases appearing in <15 min, reaction completion in <12 h, and high yields (75-80%). Upon contact with nitric or hydrochloric acid, these materials topotactically exchange Na+ for H+, proceeding in a stepwise protonation pathway for Na5.33Sn2.67S8. Na-NMS is stable in 2 M HNO3 and Mg-NMS is stable in 4 M HNO3 for up to 4 h, while both NMS materials are stable in 6 M HCl for up to 4 days. However, the treatment of Mg-NMS and Na-NMS with 2-6 M H2SO4 reveals a much slower protonation process since after 4 h of contact both NMS and HMS are present in the solution. The resultant protonated materials, H2xMg2y-xSn4-yS8 and H4x[(HyNay-1)1.33xSn4--1.33x]S8, are themselves solid acids and readily react with and intercalate a variety of organic amines, where the band gap of the resultant adduct is influenced by amine choice and can be tuned within the range of 1.88(5)-2.27(5) eV. The work function energy values for all materials were extracted from photoemission yield spectroscopy in air (PYSA) measurements and range from 5.47 (2) to 5.76 (2) eV, and the relative band alignments of the materials are discussed. DFT calculations suggest that the electronic structure of Na2MgSn3S8 and H2MgSn3S8 makes them indirect gap semiconductors with multi-valley band edges, with carriers confined to the [MgSn3S8]2- layers. Light electron effective masses indicate high electron mobilities.

14.
Adv Sci (Weinh) ; 10(26): e2303133, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37414727

RESUMO

2D hybrid organic-inorganic perovskites (HOIPs) are commonly found under subcritical cyclic stresses and suffer from fatigue issues during device operation. However, their fatigue properties remain unknown. Here, the fatigue behavior of (C4 H9 -NH3 )2 (CH3 NH3 )2 Pb3 I10 , the archetype 2D HOIP, is systematically investigated by atomic force microscopy (AFM). It is found that 2D HOIPs are much more fatigue resilient than polymers and can survive over 1 billion cycles. 2D HOIPs tend to exhibit brittle failure at high mean stress levels, but behave as ductile materials at low mean stress levels. These results suggest the presence of a plastic deformation mechanism in these ionic 2D HOIPs at low mean stress levels, which may contribute to the long fatigue lifetime, but is inhibited at higher mean stresses. The stiffness and strength of 2D HOIPs are gradually weakened under subcritical loading, potentially as a result of stress-induced defect nucleation and accumulation. The cyclic loading component can further accelerate this process. The fatigue lifetime of 2D HOIPs can be extended by reducing the mean stress, stress amplitude, or increasing the thickness. These results can provide indispensable insights into designing and engineering 2D HOIPs and other hybrid organic-inorganic materials for long-term mechanical durability.

16.
Inorg Chem ; 62(31): 12413-12422, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37489948

RESUMO

Transition metal subchalcogenides involve electron-rich metals and can facilitate an in-depth understanding of the relationships among quantum properties such as superconductivity, charge density wave, and topological band structures. However, effective experimental routes toward synthesizing transition metal subchalcogenides are still lacking, hindering the development of new quantum materials. Herein, we propose a eutectic polytelluride flux strategy as an excellent solution to address phase discovery and crystal growth in transition metal subtelluride systems. We report new phases easily and selectively synthesized using a eutectic "K3Te4" polytelluride flux upon adjusting the ratio of Nb metal to flux in the starting materials (K/Nb/Te = 3:x:4). Using a high Nb content in the solvent (x = 2 and 1), crystals of KNb3Te3O0.38 and K0.9Nb3Te4 are obtained. Both subtellurides exhibit diverse Nb clusters, including face-sharing and edge-sharing Nb6 octahedral columns and zig-zag Nb chains. Reducing the Nb content to x = 0.33 leads to the formation of a layered compound, K1.06NbTe2. This compound comprises a NbTe6 trigonal prism with K intercalated between the layers. Single crystals of known binary Nb tellurides can also be grown using another eutectic flux "KTe3.2", and the obtained NbTe2 exhibits a new polymorphism with extra trimerization along the b-axis in the Nb-Nb bonded double zig-zag cluster. Precise control over the structural dimensionality and oxidation state, combined with the facile crystal growth process, makes our synthetic strategy an efficient route to explore quantum materials in transition metal subchalcogenides.

17.
J Am Chem Soc ; 145(29): 15951-15962, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37436556

RESUMO

The ability to manipulate crystal structures using kinetic control is of broad interest because it enables the design of materials with structures, compositions, and morphologies that may otherwise be unattainable. Herein, we report the low-temperature structural transformation of bulk inorganic crystals driven by hard-soft acid-base (HSAB) chemistry. We show that the three-dimensional framework K2Sb8Q13 and layered KSb5Q8 (Q = S, Se, and Se/S solid solutions) compounds transform to one-dimensional Sb2Q3 nano/microfibers in N2H4·H2O solution by releasing Q2- and K+ ions. At 100 °C and ambient pressure, a transformation process takes place that leads to significant structural changes in the materials, including the formation and breakage of covalent bonds between Sb and Q. Despite the insolubility of the starting crystals in N2H4·H2O under the given conditions, the mechanism of this transformation can be rationalized by applying the HSAB principle. By adjusting factors such as the reactants' acid/base properties, temperature, and pressure, the process can be controlled, allowing for the achievement of a wide range of optical band gaps (ranging from 1.14 to 1.59 eV) while maintaining the solid solution nature of the anion sublattice in the Sb2Q3 nanofibers.

18.
J Am Chem Soc ; 145(29): 15997-16014, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37432784

RESUMO

The alloyed lead/tin (Pb/Sn) halide perovskites have gained significant attention in the development of tandem solar cells and other optoelectronic devices due to their widely tunable absorption edge. To gain a better understanding of the intriguing properties of Pb/Sn perovskites, such as their anomalous bandgap's dependence on stoichiometry, it is important to deepen the understanding of their chemical behavior and local structure. Herein, we investigate a series of two-dimensional Ruddlesden-Popper (RP) and Dion-Jacobson (DJ) phase alloyed Pb/Sn bromide perovskites using butylammonium (BA) and 3-(aminomethyl)pyridinium (3AMPY) as the spacer cations: (BA)2(MA)n-1PbxSnn-xBr3n+1 (n = 1-3) and (3AMPY)(MA)n-1PbxSnn-xBr3n+1 (n = 1-3) through a solution-based approach. Our results show that the ratio and site preference of Pb/Sn atoms are influenced by the layer thickness (n) and spacer cations (A'), as determined by single-crystal X-ray diffraction. Solid-state 1H, 119Sn, and 207Pb NMR spectroscopy analysis shows that the Pb atoms prefer the outer layers in n = 3 members: (BA)2(MA)PbxSnn-xBr10 and (3AMPY)(MA)PbxSnn-xBr10. Layered 2D DJ alloyed Pb/Sn bromide perovskites (3AMPY)(MA)n-1PbxSnn-xBr3n+1 (n = 1-3) demonstrate much narrower optical band gaps, lower energy PL emission peaks, and longer carrier lifetimes compared to those of RP analogs. Density functional theory calculations suggest that Pb-rich alloys (Pb:Sn ∼4:1) for n = 1 compounds are thermodynamically favored over 50:50 (Pb:Sn ∼1:1) compositions. From grazing-incidence wide-angle X-ray scattering (GIWAXS), we see that films in the RP phase orient parallel to the substrate, whereas for DJ cases, random orientations are observed relative to the substrate.

19.
Science ; 381(6654): 209-215, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37440655

RESUMO

Perovskite solar cells (PSCs) consisting of interfacial two- and three-dimensional heterostructures that incorporate ammonium ligand intercalation have enabled rapid progress toward the goal of uniting performance with stability. However, as the field continues to seek ever-higher durability, additional tools that avoid progressive ligand intercalation are needed to minimize degradation at high temperatures. We used ammonium ligands that are nonreactive with the bulk of perovskites and investigated a library that varies ligand molecular structure systematically. We found that fluorinated aniliniums offer interfacial passivation and simultaneously minimize reactivity with perovskites. Using this approach, we report a certified quasi-steady-state power-conversion efficiency of 24.09% for inverted-structure PSCs. In an encapsulated device operating at 85°C and 50% relative humidity, we document a 1560-hour T85 at maximum power point under 1-sun illumination.

20.
Adv Mater ; 35(38): e2303244, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37285797

RESUMO

The perovskite compound CsPbBr3 has recently been discovered as a promising room-temperature semiconductor radiation detector, offering an inexpensive and easy-to-manufacture alternative to the current benchmark material Cd1-x Znx Te (CZT). The performance of CsPbBr3 sensors is evaluated under harsh conditions, such as high radiation doses often found in industrial settings and extreme radiation in space. Results show minimal degradation in detector performance after exposure to 1 Mrad of Co-60 gamma radiation, with no significant change to energy resolution or hole mobility and lifetime. Additionally, many of the devices are still functional after being exposed to a 10 Mrad dose over 3 days, and those that do not survive can still be refabricated into working detectors. These results suggest that the failure mode in these devices is likely related to the interface between the electrode and material and their reaction, or the electrode itself and not the material itself. Overall, the study suggests that CsPbBr3 has high potential as a reliable and efficient radiation detector in various applications, including those involving extreme fluxes and energies of gamma-ray radiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...