Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biotechnol (Tokyo) ; 40(3): 247-254, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-38420568

RESUMO

In general, plant organ size is determined using cell number and expansion. In our previous study, we generated soybean (Glycine max) mutants of the PEAPOD (PPD) genes GmPPD1 and GmPPD2 using the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated endonuclease 9 system. Some of these mutants exhibited extremely abnormal phenotypes, such as twisted pods and limited seeds. These phenotypes were attributed to the frameshift mutation in both GmPPD loci. In this study, the physiological and molecular biological properties of mutant plants with two knocked-out GmPPD loci (ppd-KO) were characterized. The ppd-KO mutant exhibited a delayed growth phase from the time of development of the unifoliolate leaves to that of first trifoliolate leaves and a stay-green phenotype, which were not observed in the other mutants of soybean or ppd mutants of other plant species. Gene expression analysis revealed considerably decreased expression of SPIRAL1-LIKE 5 (GmSP1L5), mainly causing the twisted pod phenotype observed in the ppd-KO mutant. The relationship between PPD and SP1L5 has not been previously reported, and in this study, we showed that that loss of PPD functioning affects SP1L5 expression in soybean. In this study, we revealed that the decrease in PPD function contributed to organ enlargement and that complete knockout of PPD has a negative effect on soybean organogenesis.

2.
Transgenic Res ; 30(1): 77-89, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33386504

RESUMO

The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated endonuclease 9 (Cas9) system is being rapidly developed for mutagenesis in higher plants. Ideally, foreign DNA introduced by this system is removed in the breeding of edible crops and vegetables. Here, we report an efficient generation of Cas9-free mutants lacking an allergenic gene, Gly m Bd 30K, using biolistic transformation and the CRISPR/Cas9 system. Five transgenic embryo lines were selected on the basis of hygromycin resistance. Cleaved amplified polymorphic sequence analysis detected only two different mutations in e all of the lines. These results indicate that mutations were induced in the target gene immediately after the delivery of the exogenous gene into the embryo cells. Soybean plantlets (T0 plants) were regenerated from two of the transgenic embryo lines. The segregation pattern of the Cas9 gene in the T1 generation, which included Cas9-free plants, revealed that a single copy number of transgene was integrated in both lines. Immunoblot analysis demonstrated that no Gly m Bd 30K protein accumulated in the Cas9-free plants. Gene expression analysis indicated that nonsense mRNA decay might have occurred in mature mutant seeds. Due to the efficient induction of inheritable mutations and the low integrated transgene copy number in the T0 plants, we could remove foreign DNA easily by genetic segregation in the T1 generation. Our results demonstrate that biolistic transformation of soybean embryos is useful for CRISPR/Cas9-mediated site-directed mutagenesis of soybean for human consumption.


Assuntos
Antígenos de Plantas/genética , Sistemas CRISPR-Cas/genética , Glycine max/genética , Proteínas de Soja/genética , Transgenes/genética , Antígenos de Plantas/efeitos adversos , Antígenos de Plantas/imunologia , Biolística , Produtos Agrícolas/genética , Edição de Genes , Genoma de Planta , Humanos , Mutagênese Sítio-Dirigida , Mutação/genética , Melhoramento Vegetal , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/imunologia , Proteínas de Soja/efeitos adversos , Proteínas de Soja/imunologia , Glycine max/crescimento & desenvolvimento , Glycine max/imunologia , Transgenes/imunologia
3.
BMC Plant Biol ; 20(1): 513, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33176692

RESUMO

BACKGROUND: Soybean (Glycine max) is a major protein crop, because soybean protein has an amino acid score comparable to that of beef and egg white. However, many allergens have been identified among soybean proteins. A decrease in allergenic protein levels would be useful for expanding the market for soybean proteins and processed foods. Recently, the CRISPR/Cas9 system has been adopted as a powerful tool for the site-directed mutagenesis in higher plants. This system is expected to generate hypoallergenic soybean varieties. RESULTS: We used two guide RNAs (gRNAs) and Agrobacterium-mediated transformation for simultaneous site-directed mutagenesis of two genes encoding the major allergens Gly m Bd 28 K and Gly m Bd 30 K in two Japanese soybean varieties, Enrei and Kariyutaka. We obtained two independent T0 Enrei plants and nine T0 Kariyutaka plants. Cleaved amplified polymorphic sequence (CAPS) analysis revealed that mutations were induced in both targeted loci of both soybean varieties. Sequencing analysis showed that deletions were the predominant mutation type in the targeted loci. The Cas9-free plants carrying the mutant alleles of the targeted loci with the transgenes excluded by genetic segregation were obtained in the T2 and T3 generations. Variable mutational spectra were observed in the targeted loci even in T2 and T3 progenies of the same T0 plant. Induction of multiple mutant alleles resulted in six haplotypes in the Cas9-free mutants derived from one T0 plant. Immunoblot analysis revealed that no Gly m Bd 28 K or Gly m Bd 30 K protein accumulated in the seeds of the Cas9-free plants. Whole-genome sequencing confirmed that a Cas9-free mutant had also no the other foreign DNA from the binary vector. Our results demonstrate the applicability of the CRISPR/Cas9 system for the production of hypoallergenic soybean plants. CONCLUSIONS: Simultaneous site-directed mutagenesis by the CRISPR/Cas9 system removed two major allergenic proteins from mature soybean seeds. This system enables rapid and efficient modification of seed components in soybean varieties.


Assuntos
Alelos , Genes de Plantas , Glycine max/genética , Mutagênese Sítio-Dirigida/métodos , Mutação , Melhoramento Vegetal/métodos , Plantas Geneticamente Modificadas , Alérgenos/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Produtos Agrícolas/genética , Edição de Genes , Técnicas de Transferência de Genes , Genoma de Planta
4.
Plant Cell Rep ; 37(3): 553-563, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29333573

RESUMO

KEY MESSAGE: Using a gRNA and Agrobacterium-mediated transformation, we performed simultaneous site-directed mutagenesis of two GmPPD loci in soybean. Mutations in GmPPD loci were confirmed in at least 33% of T2 seeds. The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated endonuclease 9 (Cas9) system is a powerful tool for site-directed mutagenesis in crops. Using a single guide RNA (gRNA) and Agrobacterium-mediated transformation, we performed simultaneous site-directed mutagenesis of two homoeologous loci in soybean (Glycine max), GmPPD1 and GmPPD2, which encode the orthologs of Arabidopsis thaliana PEAPOD (PPD). Most of the T1 plants had heterozygous and/or chimeric mutations for the targeted loci. The sequencing analysis of T1 and T2 generations indicates that putative mutation induced in the T0 plant is transmitted to the T1 generation. The inheritable mutation induced in the T1 plant was also detected. This result indicates that continuous induction of mutations during T1 plant development increases the occurrence of mutations in germ cells, which ensures the transmission of mutations to the next generation. Simultaneous site-directed mutagenesis in both GmPPD loci was confirmed in at least 33% of T2 seeds examined. Approximately 19% of double mutants did not contain the Cas9/gRNA expression construct. Double mutants with frameshift mutations in both GmPPD1 and GmPPD2 had dome-shaped trifoliate leaves, extremely twisted pods, and produced few seeds. Taken together, our data indicate that continuous induction of mutations in the whole plant and advancing generations of transgenic plants enable efficient simultaneous site-directed mutagenesis in duplicated loci in soybean.


Assuntos
Genes Duplicados/genética , Genes de Plantas/genética , Glycine max/genética , Mutagênese Sítio-Dirigida/métodos , RNA Guia de Cinetoplastídeos/genética , Sequência de Aminoácidos , Sistemas CRISPR-Cas , Proteínas de Ligação a DNA/genética , Genoma de Planta/genética , Padrões de Herança , Mutação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...