Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661530

RESUMO

Retinitis pigmentosa (RP), a heterogenous group of inherited retinal disorder, causes slow progressive vision loss with no effective treatments available. Mutations in the rhodopsin gene (RHO) account for ~25% cases of autosomal dominant RP (adRP). In this study, we describe the disease characteristics of the first-ever reported mono-allelic copy number variation (CNV) in RHO as a novel cause of adRP. We (a) show advanced retinal degeneration in a male patient (68 years of age) harboring four transcriptionally active intact copies of rhodopsin, (b) recapitulated the clinical phenotypes using retinal organoids, and (c) assessed the utilization of a small molecule, Photoregulin3 (PR3), as a clinically viable strategy to target and modify disease progression in RP patients associated with RHO-CNV. Patient retinal organoids showed photoreceptors dysgenesis, with rod photoreceptors displaying stunted outer segments with occasional elongated cilia-like projections (microscopy); increased RHO mRNA expression (quantitative real-time PCR [qRT-PCR] and bulk RNA sequencing); and elevated levels and mislocalization of rhodopsin protein (RHO) within the cell body of rod photoreceptors (western blotting and immunohistochemistry) over the extended (300 days) culture time period when compared against control organoids. Lastly, we utilized PR3 to target NR2E3, an upstream regulator of RHO, to alter RHO expression and observed a partial rescue of RHO protein localization from the cell body to the inner/outer segments of rod photoreceptors in patient organoids. These results provide a proof-of-principle for personalized medicine and suggest that RHO expression requires precise control. Taken together, this study supports the clinical data indicating that RHO-CNV associated adRPdevelops as a result of protein overexpression, thereby overloading the photoreceptor post-translational modification machinery.


Assuntos
Variações do Número de Cópias de DNA , Retinose Pigmentar , Rodopsina , Idoso , Humanos , Masculino , Organoides/metabolismo , Organoides/efeitos dos fármacos , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Rodopsina/genética , Rodopsina/metabolismo
2.
Stem Cell Reports ; 19(3): 331-342, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38335965

RESUMO

Several retinal degenerations affect the human central retina, which is primarily comprised of cones and is essential for high acuity and color vision. Transplanting cone photoreceptors is a promising strategy to replace degenerated cones in this region. Although this approach has been investigated in a handful of animal models, commonly used rodent models lack a cone-rich region and larger models can be expensive and inaccessible, impeding the translation of therapies. Here, we transplanted dissociated GFP-expressing photoreceptors from retinal organoids differentiated from human induced pluripotent stem cells into the subretinal space of damaged and undamaged cone-dominant 13-lined ground squirrel eyes. Transplanted cell survival was documented via noninvasive high-resolution imaging and immunohistochemistry to confirm the presence of human donor photoreceptors for up to 4 months posttransplantation. These results demonstrate the utility of a cone-dominant rodent model for advancing the clinical translation of cell replacement therapies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Degeneração Retiniana , Animais , Humanos , Células Fotorreceptoras Retinianas Cones/transplante , Células-Tronco Pluripotentes Induzidas/transplante , Retina , Degeneração Retiniana/terapia , Sciuridae
3.
Adv Exp Med Biol ; 1415: 549-554, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440085

RESUMO

Inherited retinal degenerations (IRD) encompasses a group of heterogeneous disorders causing debilitating visual diseases and blindness, affecting more than two million people worldwide, in all age groups. The inheritance patterns vary from autosomal dominant, autosomal recessive, X-linked, and sporadic with mutations in over 260 genes identified to date. Despite the significant advances in clinical diagnosis, there is no effective treatment available. Human-induced pluripotent stem cells (hiPSC) derived in vitro 3D retinal organoids offer a powerful preclinical tool to investigate the molecular mechanism(s) of inherited diseases. Organoids have the potential for the development of personalized therapies by modeling the disease-specific and patient-specific IRD. This mini-review will elaborate on the utility of the advanced culture model system by focusing on staging the in vitro human retinogenesis, modeling retinal diseases, and as a tool for testing potential therapeutic approaches to restore or prevent vision loss in affected individuals.


Assuntos
Células-Tronco Pluripotentes Induzidas , Degeneração Retiniana , Doenças Retinianas , Humanos , Retina , Degeneração Retiniana/genética , Degeneração Retiniana/terapia , Doenças Retinianas/genética , Doenças Retinianas/terapia , Mutação , Organoides
4.
medRxiv ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36909455

RESUMO

Retinitis pigmentosa (RP), a heterogenous group of inherited retinal disorder causes slow progressive vision loss with no effective treatments available. Mutations in the rhodopsin gene (RHO), account for ~25% cases of autosomal dominant RP (adRP). In this study, we describe the disease characteristics of the first ever reported mono-allelic copy number variation (CNV) in RHO as a novel cause of adRP. We (1) show advanced retinal degeneration in a male patient (60-70 year old) harboring four transcriptionally active intact copies of rhodopsin, (2) recapitulated the clinical phenotypes using retinal organoids, and (3) assessed the utilization of a small molecule, Photoregulin3 (PR3), as a clinically viable strategy to target and modify disease progression in RP patients associated with RHO-CNV. Patient retinal organoids showed photoreceptors dysgenesis, with rod photoreceptors displaying stunted outer segments with occasional elongated cilia-like projections (microscopy); increased RHO mRNA expression (qRT-PCR and bulk RNA-sequencing); and elevated levels and mislocalization of rhodopsin protein (RHO) within the cell body of rod photoreceptors (western blotting and immunohistochemistry) over the extended (300-days) culture time period when compared against control organoids. Lastly, we utilized PR3 to target NR2E3, an upstream regulator of RHO, to alter RHO expression and observed a partial rescue of RHO protein localization from the cell body to the inner/outer segments of rod photoreceptors in patient organoids. These results provide a proof-of-principle for personalized medicine and suggest that RHO expression requires precise control. Taken together, this study supports the clinical data indicating that adRP due to RHO-CNV develops due protein overexpression overloading the photoreceptor post-translational modification machinery.

5.
Pharm Res ; 40(4): 801-816, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36002615

RESUMO

PURPOSE: There is a growing interest in extracellular vesicles (EVs) for ocular applications as therapeutics, biomarkers, and drug delivery vehicles. EVs secreted from mesenchymal stem cells (MSCs) have shown to provide therapeutic benefits in ocular conditions. However, very little is known about the properties of bioreactor cultured-3D human retinal organoids secreted EVs. This study provides a comprehensive morphological, nanomechanical, molecular, and proteomic characterization of retinal organoid EVs and compares it with human umbilical cord (hUC) MSCs. METHODS: The morphology and nanomechanical properties of retinal organoid EVs were assessed using Nanoparticle tracking analysis (NTA) and Atomic force microscopy (AFM). Gene expression analysis of exosome biogenesis of early and late retinal organoids were compared using qPCR. The protein profile of the EVs were analyzed with proteomic tools. RESULTS: NTA indicated the average size of EV as 100-250 nm. A high expression of exosome biogenesis genes was observed in late retinal organoids EVs. Immunoblot analysis showed highly expressed exosomal markers in late retinal organoids EVs compared to early retinal organoids EVs. Protein profiling of retinal organoid EVs displayed a higher differential expression of retinal function-related proteins and EV biogenesis proteins than hUCMSC EVs, implicating that the use of retinal organoid EVs may have a superior therapeutic effect on retinal disorders. CONCLUSION: This study provides supplementary knowledge on the properties of retinal organoid EVs and suggests their potential use in the diagnostic and therapeutic treatments for ocular diseases.


Assuntos
Exossomos , Vesículas Extracelulares , Humanos , Proteômica , Vesículas Extracelulares/metabolismo , Retina , Organoides/metabolismo
6.
Transl Vis Sci Technol ; 11(11): 17, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36409292

RESUMO

Purpose: The cone-dominant, 13-lined ground squirrel (13-LGS) retina mimics the human central retina, but a thorough examination of retinal development in this species has not been reported. Here, the embryonic and postnatal development of the 13-LGS retina was studied to further characterize 13-LGS as a practical alternative animal model for investigating cone-based vision in health and disease. Methods: The spatiotemporal expression of key progenitor and cell type markers was examined in retinas from defined embryonic and postnatal stages using immunohistochemistry. Postnatal gene expression changes were validated by quantitative PCR. Results: The 13-LGS neuroblastic layer expressed key progenitor markers (Sox2, Vsx2, Pax6, and Lhx2) at E18. Sequential cell fate determination evidenced by the first appearance of cell-type-specific marker labeling was at embryonic stage 18 (E18) with ganglion cells (Brn-3A, HuC/D) and microglia (Iba1); at E22.5 with photoreceptor progenitors (Otx2, recoverin) followed shortly by horizontal and amacrine cells (Lhx1, Oc1) at E24 to E25.5; and at postnatal stage 15 (P15) with bipolar cells (Vsx1, CaBP5) and Müller glia cells (GS, Rlbp1). Photoreceptor maturation indicated by opsin-positive outer segments and peanut agglutinin (PNA) labeling of cone sheaths was completed at the time of eye opening (P21-P24). Conclusions: The timeline and order of retinal cell development in the 13-LGS generally matches that recorded from other mammalian models but with a stark variation in the proportion of various cell types due to cone-dense photoreceptors. Translational Relevance: This thorough examination of an emerging translationally relevant cone-dominant specie provides a baseline for future disease modeling and stem cell approach studies of human vision.


Assuntos
Células Fotorreceptoras Retinianas Cones , Sciuridae , Animais , Humanos , Retina , Células Amácrinas , Células Ependimogliais
7.
Invest Ophthalmol Vis Sci ; 63(10): 12, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36129723

RESUMO

Purpose: Transplanting photoreceptors from human pluripotent stem cell-derived retinal organoids have the potential to reverse vision loss in affected individuals. However, transplantable photoreceptors are only a subset of all cells in the organoids. Hence, the goal of our current study was to accelerate and synchronize photoreceptor differentiation in retinal organoids by inhibiting the Notch signaling pathway at different developmental time-points using a small molecule, PF-03084014 (PF). Methods: Human induced pluripotent stem cell- and human embryonic stem cells-derived retinal organoids were treated with 10 µM PF for 3 days starting at day 45 (D45), D60, D90, and D120 of differentiation. Organoids were collected at post-treatment days 14, 28, and 42 and analyzed for progenitor and photoreceptor markers and Notch pathway inhibition by immunohistochemistry (IHC), quantitative PCR, and bulk RNA sequencing (n = 3-5 organoids from three independent experiments). Results: Retinal organoids collected after treatment showed a decrease in progenitor markers (KI67, VSX2, PAX6, and LHX2) and an increase in differentiated pan-photoreceptor markers (OTX2, CRX, and RCVRN) at all organoid stages except D120. PF-treated organoids at D45 and D60 exhibited an increase in cone photoreceptor markers (RXRG and ARR3). PF treatment at D90 revealed an increase in cone and rod photoreceptors markers (ARR3, NRL, and NR2E3). Bulk RNA sequencing analysis mirrored the immunohistochemistry data and quantitative PCR confirmed Notch effector inhibition. Conclusions: Timing the Notch pathway inhibition in human retinal organoids to align with progenitor competency stages can yield an enriched population of early cone or rod photoreceptors.


Assuntos
Células-Tronco Pluripotentes Induzidas , Organoides , Diferenciação Celular/fisiologia , Humanos , Antígeno Ki-67/metabolismo , Proteínas com Homeodomínio LIM , Organoides/metabolismo , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo
8.
Dev Biol ; 488: 131-150, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35644251

RESUMO

How cone photoreceptors are formed during retinal development is only partially known. This is in part because we do not fully understand the gene regulatory network responsible for cone genesis. We reasoned that cis-regulatory elements (enhancers) active in nascent cones would be regulated by the same upstream network that controls cone formation. To dissect this network, we searched for enhancers active in developing cones. By electroporating enhancer-driven fluorescent reporter plasmids, we observed that a sequence within an intron of the cone-specific Pde6c gene acted as an enhancer in developing mouse cones. Similar fluorescent reporter plasmids were used to generate stable transgenic human induced pluripotent stem cells that were then grown into three-dimensional human retinal organoids. These organoids contained fluorescently labeled cones, demonstrating that the Pde6c enhancer was also active in human cones. We observed that enhancer activity was transient and labeled a minor population of developing rod photoreceptors in both mouse and human systems. This cone-enriched pattern argues that the Pde6c enhancer is activated in cells poised between rod and cone fates. Additionally, it suggests that the Pde6c enhancer is activated by the same regulatory network that selects or stabilizes cone fate choice. To further understand this regulatory network, we identified essential enhancer sequence regions through a series of mutagenesis experiments. This suggested that the Pde6c enhancer was regulated by transcription factor binding at five or more locations. Binding site predictions implicated transcription factor families known to control photoreceptor formation and families not previously associated with cone development. These results provide a framework for deciphering the gene regulatory network that controls cone genesis in both human and mouse systems. Our new transgenic human stem cell lines provide a tool for determining which cone developmental mechanisms are shared and distinct between mice and humans.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células Fotorreceptoras Retinianas Cones , Animais , Humanos , Camundongos , Animais Geneticamente Modificados , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Proteínas do Olho/genética , Íntrons/genética , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Fatores de Transcrição/metabolismo
9.
Xenotransplantation ; 29(2): e12730, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35166406

RESUMO

Liver failure is a critical disease for which regenerative therapies are still being explored. The major limitation in the use of a clinical grade, viable cell-based therapy approach is the scarce availability of sufficient number of in-vitro differentiated hepatocyte-like cells (HLC) that can induce regeneration and ameliorate liver injury. Here, we report for the first time an approach to engineer HLCs using sera of hyperbilirubin patients that act as a reservoir of differentiation factor. Utilizing our humanized approach, mesenchymal stem cells (hMSC) derived from umbilical cord tissue were transdifferentiated into HLC using patient-derived serum along with dimethyl sulfoxide (DMSO). We studied the effects of serum on the proliferation, cell cycle analysis, and apoptosis of hMSC by various differentiation combinations. We optimized the hepatic transdifferentiation ability of hMSC with hyperbilirubin serum treatment for a period of 7 days. Assessment of HLC functionalities was shown by quantifying the HLC spent medium for albumin and urea secretions. Transplantation of HLC in an acute liver injury (ALI) rat model showed an effective improvement in the liver function and histological changes in the liver. The results of this study suggest that hMSC-derived HLC using humanized hepatogenic serum holds a promising potential for cell transplantation, as an efficient therapy modality for liver failure in humans.


Assuntos
Falência Hepática , Células-Tronco Mesenquimais , Animais , Diferenciação Celular , Hepatócitos , Humanos , Falência Hepática/metabolismo , Ratos , Transplante Heterólogo
10.
Cytokine Growth Factor Rev ; 46: 1-9, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30954374

RESUMO

Mesenchymal Stem Cells (MSCs) have been shown to be a promising candidate for cell-based therapy. The therapeutic potential of MSCs, towards tissue repair and wound healing is essentially based on their paracrine effects. Numerous pre-clinical and clinical studies of MSCs have yielded encouraging results. Further, these cells have been shown to be relatively safe for clinical applications. MSCs harvested from numerous anatomical locations including the bone marrow, adipose tissue, Wharton's jelly of the umbilical cord etc., display similar immunophenotypic profiles. However, there is a large body of evidence showing that MSCs secrete a variety of biologically active molecules such as growth factors, chemokines, and cytokines. Despite the similarity in their immunophenotype, the secretome of MSCs appears to vary significantly, depending on the age of the host and niches where the cells reside. Thus, by implication, proteomics-based profiling suggests that the therapeutic potential of the different MSC populations must also be different. Analysis of the secretome points to its influence on varied biological processes such as angiogenesis, neurogenesis, tissue repair, immunomodulation, wound healing, anti-fibrotic and anti-tumour for tissue maintenance and regeneration. Though MSC based therapy has been shown to be relatively safe, from a clinical standpoint, the use of cell-free infusions can altogether circumvent the administration of viable cells for therapy. Understanding the secretome of in vitro cultured MSC populations, by the analysis of the corresponding conditioned medium, will enable us to evaluate its utility as a new therapeutic option. This review will focus on the accumulating evidence that points to the therapeutic potential of the conditioned medium, both from pre-clinical and clinical studies. Finally, this review will emphasize the importance of profiling the conditioned medium for assessing its potential for cell-free therapy therapy.


Assuntos
Diferenciação Celular , Terapia Baseada em Transplante de Células e Tecidos/métodos , Meios de Cultivo Condicionados/metabolismo , Células-Tronco Mesenquimais/fisiologia , Medicina Regenerativa/métodos , Animais , Proliferação de Células , Terapia Baseada em Transplante de Células e Tecidos/tendências , Ensaios Clínicos como Assunto , Citocinas , Humanos , Metaboloma , Camundongos , Medicina Regenerativa/tendências
11.
Sci Rep ; 8(1): 12439, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30127445

RESUMO

Mesenchymal stem cells (MSCs) have immense potential for cell-based therapy of acute and chronic pathological conditions. MSC transplantation for cell-based therapy requires a substantial number of cells in the range of 0.5-2.5 × 106 cells/kg body weight of an individual. A prolific source of MSCs followed by in vitro propagation is therefore an absolute prerequisite for clinical applications. Umbilical cord tissue (UCT) is an abundantly available prolific source of MSC that are fetal in nature and have higher potential for ex-vivo expansion. However, the ex-vivo expansion of MSCs using a xenogeneic supplement such as fetal bovine serum (FBS) carries the risk of transmission of zoonotic infections and immunological reactions. We used platelet lysate (PL) as a xeno-free, allogeneic replacement for FBS and compared the biological and functional characteristics of MSC processed and expanded with PL and FBS by explant and enzymatic method. UCT-MSCs expanded using PL displayed typical immunophenotype, plasticity, immunomodulatory property and chromosomal stability. PL supplementation also showed 2-fold increase in MSC yield from explant culture with improved immunomodulatory activity as compared to enzymatically dissociated cultures. In conclusion, PL from expired platelets is a viable alternative to FBS for generating clinically relevant numbers of MSC from explant cultures over enzymatic method.


Assuntos
Plaquetas/enzimologia , Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/enzimologia , Soroalbumina Bovina/metabolismo , Cordão Umbilical/enzimologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Meios de Cultura/metabolismo , Humanos
12.
JAMA Cardiol ; 3(6): 481-488, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29641836

RESUMO

Importance: The genetic variant MYBPC3Δ25bp occurs in 4% of South Asian descendants, with an estimated 100 million carriers worldwide. MYBPC3 Δ25bp has been linked to cardiomyopathy and heart failure. However, the high prevalence of MYBPC3Δ25bp suggests that other stressors act in concert with MYBPC3Δ25bp. Objective: To determine whether there are additional genetic factors that contribute to the cardiomyopathic expression of MYBPC3Δ25bp. Design, Setting, andParticipants: South Asian individuals living in the United States were screened for MYBPC3Δ25bp, and a subgroup was clinically evaluated using electrocardiograms and echocardiograms at Loyola University, Chicago, Illinois, between January 2015 and July 2016. Main Outcomes and Measures: Next-generation sequencing of 174 cardiovascular disease genes was applied to identify additional modifying gene mutations and correlate genotype-phenotype parameters. Cardiomyocytes derived from human-induced pluripotent stem cells were established and examined to assess the role of MYBPC3Δ25bp. Results: In this genotype-phenotype study, individuals of South Asian descent living in the United States from both sexes (36.23% female) with a mean population age of 48.92 years (range, 18-84 years) were recruited. Genetic screening of 2401 US South Asian individuals found an MYBPC3Δ25bpcarrier frequency of 6%. A higher frequency of missense TTN variation was found in MYBPC3Δ25bp carriers compared with noncarriers, identifying distinct genetic backgrounds within the MYBPC3Δ25bp carrier group. Strikingly, 9.6% of MYBPC3Δ25bp carriers also had a novel MYBPC3 variant, D389V. Family studies documented D389V was in tandem on the same allele as MYBPC3Δ25bp, and D389V was only seen in the presence of MYBPC3Δ25bp. In contrast to MYBPC3Δ25bp, MYBPC3Δ25bp/D389V was associated with hyperdynamic left ventricular performance (mean [SEM] left ventricular ejection fraction, 66.7 [0.7%]; left ventricular fractional shortening, 36.6 [0.6%]; P < .03) and stem cell-derived cardiomyocytes exhibited cellular hypertrophy with abnormal Ca2+ transients. Conclusions and Relevance: MYBPC3Δ25bp/D389V is associated with hyperdynamic features, which are an early finding in hypertrophic cardiomyopathy and thought to reflect an unfavorable energetic state. These findings support that a subset of MYBPC3Δ25bp carriers, those with D389V, account for the increased risk attributed to MYBPC3Δ25bp.


Assuntos
Asiático/genética , Cardiomiopatia Hipertrófica/etnologia , Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/genética , Mutação/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Cardiomiopatia Hipertrófica/fisiopatologia , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Volume Sistólico , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...