Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 87(11)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33771781

RESUMO

Over the past century, microbiologists have studied organisms in pure culture, yet it is becoming increasingly apparent that the majority of biological processes rely on multispecies cooperation and interaction. While little is known about how such interactions permit cooperation, even less is known about how cooperation arises. To study the emergence of cooperation in the laboratory, we constructed both a commensal community and an obligate mutualism using the previously noninteracting bacteria Shewanella oneidensis and Geobacter sulfurreducens Incorporation of a glycerol utilization plasmid (pGUT2) enabled S. oneidensis to metabolize glycerol and produce acetate as a carbon source for G. sulfurreducens, establishing a cross-feeding, commensal coculture. In the commensal coculture, both species coupled oxidative metabolism to the respiration of fumarate as the terminal electron acceptor. Deletion of the gene encoding fumarate reductase in the S. oneidensis/pGUT2 strain shifted the coculture with G. sulfurreducens to an obligate mutualism where neither species could grow in the absence of the other. A shift in metabolic strategy from glycerol catabolism to malate metabolism was associated with obligate coculture growth. Further targeted deletions in malate uptake and acetate generation pathways in S. oneidensis significantly inhibited coculture growth with G. sulfurreducens The engineered coculture between S. oneidensis and G. sulfurreducens provides a model laboratory system to study the emergence of cooperation in bacterial communities, and the shift in metabolic strategy observed in the obligate coculture highlights the importance of genetic change in shaping microbial interactions in the environment.IMPORTANCE Microbes seldom live alone in the environment, yet this scenario is approximated in the vast majority of pure-culture laboratory experiments. Here, we develop an anaerobic coculture system to begin understanding microbial physiology in a more complex setting but also to determine how anaerobic microbial communities can form. Using synthetic biology, we generated a coculture system where the facultative anaerobe Shewanella oneidensis consumes glycerol and provides acetate to the strict anaerobe Geobacter sulfurreducens In the commensal system, growth of G. sulfurreducens is dependent on the presence of S. oneidensis To generate an obligate coculture, where each organism requires the other, we eliminated the ability of S. oneidensis to respire fumarate. An unexpected shift in metabolic strategy from glycerol catabolism to malate metabolism was observed in the obligate coculture. Our work highlights how metabolic landscapes can be expanded in multispecies communities and provides a system to evaluate the evolution of cooperation under anaerobic conditions.


Assuntos
Geobacter/fisiologia , Interações Microbianas , Shewanella/fisiologia , Simbiose , Anaerobiose , Técnicas de Cocultura , Biologia Sintética
2.
Appl Environ Microbiol ; 85(16)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31175188

RESUMO

Shewanella oneidensis strain MR-1, a facultative anaerobe and model organism for dissimilatory metal reduction, uses a periplasmic flavocytochrome, FccA, both as a terminal fumarate reductase and as a periplasmic electron transfer hub for extracellular respiration of a variety of substrates. It is currently unclear how maturation of FccA and other periplasmic flavoproteins is achieved, specifically in the context of flavin cofactor loading, and the fitness cost of flavin secretion has not been quantified. We demonstrate that deletion of the inner membrane flavin adenine dinucleotide (FAD) exporter Bfe results in a 23% slower growth rate than that of the wild type during fumarate respiration and an 80 to 90% loss in fumarate reductase activity. Exogenous flavin supplementation does not restore FccA activity in a Δbfe mutant unless the gene encoding the periplasmic FAD hydrolase UshA is also deleted. We demonstrate that the small Bfe-independent pool of FccA is sufficient for anaerobic growth with fumarate. Strains lacking Bfe were unable to grow using urocanate as the sole electron acceptor, which relies on the periplasmic flavoprotein UrdA. We show that periplasmic flavoprotein maturation occurs in careful balance with periplasmic FAD hydrolysis, and that the current model for periplasmic flavin cofactor loading must account for a Bfe-independent mechanism for flavin transport. Finally, we determine that the metabolic burden of flavin secretion is not significant during growth with flavin-independent anaerobic electron acceptors. Our work helps frame the physiological motivations that drove evolution of flavin secretion by ShewanellaIMPORTANCEShewanella species are prevalent in marine and aquatic environments, throughout stratified water columns, in mineral-rich sediments, and in association with multicellular marine and aquatic organisms. The diversity of niches shewanellae can occupy are due largely to their respiratory versatility. Shewanella oneidensis is a model organism for dissimilatory metal reduction and can respire a diverse array of organic and inorganic compounds, including dissolved and solid metal oxides. The fumarate reductase FccA is a highly abundant multifunctional periplasmic protein that acts to bridge the periplasm and temporarily store electrons in a variety of respiratory nodes, including metal, nitrate, and dimethyl sulfoxide respiration. However, maturation of this central protein, particularly flavin cofactor acquisition, is poorly understood. Here, we quantify the fitness cost of flavin secretion and describe how free flavins are acquired by FccA and a homologous periplasmic flavoprotein, UrdA.


Assuntos
Flavinas/metabolismo , Fumaratos/metabolismo , Shewanella/metabolismo , Anaerobiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte de Elétrons , Flavina-Adenina Dinucleotídeo/metabolismo , Periplasma , Shewanella/genética , Shewanella/crescimento & desenvolvimento , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo
3.
J Bacteriol ; 198(8): 1337-46, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26883823

RESUMO

UNLABELLED: Shewanella oneidensis strain MR-1 is a facultative anaerobe that thrives in redox-stratified environments due to its ability to utilize a wide array of terminal electron acceptors. Conversely, the electron donors utilized by S. oneidensis are more limited and include products of primary fermentation such as lactate, pyruvate, formate, and hydrogen. Lactate, pyruvate, and hydrogen metabolisms inS. oneidensis have been described previously, but little is known about the role of formate oxidation in the ecophysiology of these bacteria. Formate is produced by S. oneidensis through pyruvate formate lyase during anaerobic growth on carbon sources that enter metabolism at or above the level of pyruvate, and the genome contains three gene clusters predicted to encode three complete formate dehydrogenase complexes. To determine the contribution of each complex to formate metabolism, strains lacking one, two, or all three annotated formate dehydrogenase gene clusters were generated and examined for growth rates and yields on a variety of carbon sources. Here, we report that formate oxidation contributes to both the growth rate and yield of S. oneidensis through the generation of proton motive force. Exogenous formate also greatly accelerated growth on N-acetylglucosamine, a carbon source normally utilized very slowly by S. oneidensis under anaerobic conditions. Surprisingly, deletion of all three formate dehydrogenase gene clusters enabled growth of S. oneidensis using pyruvate in the absence of a terminal electron acceptor, a mode of growth never before observed in these bacteria. Our results demonstrate that formate oxidation is a fundamental strategy under anaerobic conditions for energy conservation inS. oneidensis. IMPORTANCE: Shewanella species have garnered interest in biotechnology applications for their ability to respire extracellular terminal electron acceptors, such as insoluble iron oxides and electrodes. While much effort has gone into studying the proteins for extracellular electron transport, how electrons generated through the oxidation of organic carbon sources enter this pathway remains understudied. Here, we quantify the role of formate oxidation in the anaerobic physiology of Shewanella oneidensis Formate oxidation contributes to both the growth rate and yield on a variety of carbon sources through the generation of proton motive force. Advances in our understanding of the anaerobic metabolism of S. oneidensis are important for our ability to utilize and engineer this organism for applications in bioenergy, biocatalysis, and bioremediation.


Assuntos
Proteínas de Bactérias/metabolismo , Formiato Desidrogenases/metabolismo , Formiatos/metabolismo , Shewanella/metabolismo , Proteínas de Bactérias/genética , Formiato Desidrogenases/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/fisiologia , Óperon , Filogenia , Shewanella/genética
4.
PLoS One ; 11(1): e0147036, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26761437

RESUMO

Mercury is a highly toxic heavy metal and the ability of the neurotoxin methylmercury to biomagnify in the food chain is a serious concern for both public and environmental health globally. Because thousands of tons of mercury are released into the environment each year, remediation strategies are urgently needed and prompted this study. To facilitate remediation of both organic and inorganic forms of mercury, Escherichia coli was engineered to harbor a subset of genes (merRTPAB) from the mercury resistance operon. Protein products of the mer operon enable transport of mercury into the cell, cleavage of organic C-Hg bonds, and subsequent reduction of ionic mercury to the less toxic elemental form, Hg(0). E. coli containing merRTPAB was then encapsulated in silica beads resulting in a biological-based filtration material. Performing encapsulation in aerated mineral oil yielded silica beads that were smooth, spherical, and similar in diameter. Following encapsulation, E. coli containing merRTPAB retained the ability to degrade methylmercury and performed similarly to non-encapsulated cells. Due to the versatility of both the engineered mercury resistant strain and silica bead technology, this study provides a strong foundation for use of the resulting biological-based filtration material for methylmercury remediation.


Assuntos
Biodegradação Ambiental , Escherichia coli/genética , Escherichia coli/metabolismo , Compostos de Metilmercúrio/metabolismo , Óperon , Dióxido de Silício , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Resistencia a Medicamentos Antineoplásicos , Escherichia coli/efeitos dos fármacos , Compostos de Metilmercúrio/farmacologia , Microesferas
5.
ACS Synth Biol ; 2(2): 93-101, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23656372

RESUMO

Growth in three-electrode electrochemical cells allows quantitative analysis of mechanisms involved in electron flow from dissimilatory metal reducing bacteria to insoluble electron acceptors. In these systems, gold electrodes are a desirable surface to study the electrophysiology of extracellular respiration, yet previous research has shown that certain Shewanella species are unable to form productive biofilms on gold electrodes. To engineer attachment of Shewanella oneidensis to gold, five repeating units of a synthetic gold-binding peptide (5rGBP) were integrated within an Escherichia coli outer membrane protein, LamB, and displayed on the outer surface of S. oneidensis. Expression of LamB-5rGBP increased cellular attachment of S. oneidensis to unpoised gold surfaces but was also associated with the loss of certain outer membrane proteins required for extracellular respiration. Loss of these outer membrane proteins during expression of LamB-5rGBP decreased the rate at which S. oneidensis was able to reduce insoluble iron, riboflavin, and electrodes. Moreover, poising the gold electrode resulted in repulsion of the engineered cells. This study provides a strategy to specifically immobilize bacteria to electrodes while also outlining challenges involved in merging synthetic biology approaches with native cellular pathways and cell surface charge.


Assuntos
Ouro/metabolismo , Shewanella/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Biofilmes , Carbono/metabolismo , Citocromos/genética , Citocromos/metabolismo , Dinitrocresóis/metabolismo , Eletrodos , Transporte de Elétrons , Elétrons , Escherichia coli/genética , Escherichia coli/metabolismo , Compostos Férricos/metabolismo , Ouro/química , Ferro/metabolismo , Porinas/genética , Porinas/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo , Riboflavina/genética , Riboflavina/metabolismo , Shewanella/química , Shewanella/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA