Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Expr Purif ; 60(2): 110-6, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18474430

RESUMO

Human Relaxin 2 is an insulin-related peptide hormone with a mass of 19,084 Da. The mRNA contains a number of arginine codons that are rarely used by Escherichia coli to produce highly expressed proteins. As a result, expressing this recombinant protein in E. coli is problematic. When human Relaxin 2 was expressed in E. coli BL21 (DE3), several forms of the protein were made. One species had the expected molecular weight (19,084 Da). A second species observed had a molecular weight of 21,244 Da. A third minor species had a molecular weight of 17,118 Da. These aberrant molecular weights can be explained as follows. First, a sequence CGA-AAA-AAG-AGA, containing the rare arginine codons CGA and AGA was the site of the +1 frameshift that generated the 21,244 Da species. Since there was a limited supply of this arginyl-tRNA, the peptidyl-tRNA moved +1 nucleotide to occupy the codon and resumed protein synthesis. Second, a -1 frameshift associated with 'slippery A' sequence XXA-AAA-AAG accounted for 10% of the product with a mass of 17,118 Da. Presumably, the shift to -1 also occurred because there was a paucity of the arginyl-tRNAArgucu. Introduction of a plasmid coding for the cognate tRNA for AGA and site directed mutagenesis prevented the formation of both frameshift species.


Assuntos
Arginina/genética , Códon , Escherichia coli/genética , Mutação da Fase de Leitura , RNA de Transferência de Lisina/genética , Relaxina/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Fermentação , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fases de Leitura Aberta , Relaxina/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
2.
Protein Expr Purif ; 27(2): 365-74, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12597898

RESUMO

In Escherichia coli, CGG is a rare arginine codon occurring at a frequency of 0.54% in all E. coli mRNAs or 9.8% when an arginine residue is encoded for. When present in high numbers or in clusters in highly expressed recombinant mRNA, rare codons can cause expression problems compromising product yield and translational fidelity. The coding region for an N-terminally polyhistidine tagged p27 protease domain from Herpes Simplex Virus 2 (HSV-2) contains 11 of these rare arginine codons, with 3 occurring in tandem near the C-terminus of the protein. When expressed in E. coli, the majority of the recombinant material produced had an apparent molecular mass of 31 kDa by SDS-PAGE gels or 3 kDa higher than predicted. Detailed biochemical analysis was performed on chemical and enzymatic digests of the protein and peptide fragments were characterized by Edman and MS/MS sequencing approaches. Two major species were isolated comprising +1 frameshift events at both the second and third CGG codons in the triplet cluster. Translation proceeded in the missense frame to the next termination codon. In addition, significant levels of glutamine misincorporating for arginine were discovered, suggesting second base misreading of CGG as CAG. Coexpression of the argX gene, which encodes the cognate tRNA for CGG codons, largely eliminated both the frameshift and misincorporation events, and increased expression levels of authentic product by up to 7-fold. We conclude that supplementation of the rare arginyl tRNA(CGG) levels by coexpression of the argX gene can largely alleviate the CGG codon bias present in E. coli, allowing for efficient and accurate translation of heterologous gene products.


Assuntos
Arginina/genética , Escherichia coli/genética , Biossíntese de Proteínas , Sequência de Aminoácidos , Arginina/química , Sequência de Bases , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Códon , DNA Complementar/metabolismo , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Mutação da Fase de Leitura , Vetores Genéticos , Glutamina/química , Herpesvirus Humano 2/metabolismo , Espectrometria de Massas , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Proteínas Recombinantes/química , Fatores de Tempo
3.
Cytotechnology ; 38(1-3): 37-41, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19003084

RESUMO

Baculovirus containing the mammalianCMV promoter, in place of the insect polyhedronpromoter (BacMam), has been used to transientlytransfect COS, CHO and CHOE1a (CHO cells expressing theE1a transcriptional activator). Using this system forthe expression of a cellular adhesion factor (SAF-3) Fcfusion protein in CHOE1a, we found that levels ofexpression were highest with a MOI of 100, 20mM sodiumbutyrate, at 34 degrees C. Production increased furtherif the cells were resuspended in fresh medium, about3 x 10(6) cells ml(-1), prior to addition of the virus. These conditions were used to express 3 secretedproteins, SAF-3-Fc, CD40-hexa his and Asp 2-Fc, and, at2 to 6 days post infection, protein levels ranged from4 ug ml(-1) to 25 ug ml(-1). Based on these results, theBacMam system represents a viable technique forproducing protein at ug ml(-1) levels in a relatively shortperiod of time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...