Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
NAR Cancer ; 6(2): zcae020, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38720882

RESUMO

Enhancer cis-regulatory elements play critical roles in gene regulation at many stages of cell growth. Enhancers in cancer cells also regulate the transcription of oncogenes. In this study, we performed a comprehensive analysis of long-range chromatin interactions, histone modifications, chromatin accessibility and expression in two gastric cancer (GC) cell lines compared to normal gastric epithelial cells. We found that GC-specific enhancers marked by histone modifications can activate a population of genes, including some oncogenes, by interacting with their proximal promoters. In addition, motif analysis of enhancer-promoter interacting enhancers showed that GC-specific transcription factors are enriched. Among them, we found that MYB is crucial for GC cell growth and activated by the enhancer with an enhancer-promoter loop and TCF7 upregulation. Clinical GC samples showed epigenetic activation of enhancers at the MYB locus and significant upregulation of TCF7 and MYB, regardless of molecular GC subtype and clinicopathological factors. Single-cell RNA sequencing of gastric mucosa with intestinal metaplasia showed high expression of TCF7 and MYB in intestinal stem cells. When we inactivated the loop-forming enhancer at the MYB locus using CRISPR interference (dCas9-KRAB), GC cell growth was significantly inhibited. In conclusion, we identified MYB as an oncogene activated by a loop-forming enhancer and contributing to GC cell growth.

2.
Cureus ; 16(2): e55175, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38558649

RESUMO

Pancreatic cancer is an intractable malignancy associated with a dismal prognosis. Undifferentiated carcinoma, a rare subtype, poses a clinical challenge owing to a limited understanding of its molecular characteristics. In this study, we conducted genomic analysis specifically on a case of undifferentiated carcinoma of the pancreas exhibiting squamous differentiation. An 80-year-old male, previously treated for colorectal cancer, presented with a mass with central cystic degeneration in the pancreatic tail. The mass was diagnosed pathologically as undifferentiated carcinoma of the pancreas with squamous differentiation. Despite surgical resection and chemotherapy, the patient faced early postoperative recurrence, emphasizing the aggressive nature of this malignancy. Genomic analysis of distinct histologic components revealed some common mutations between undifferentiated and squamous components, including Kirsten rat sarcoma virus (KRAS) and TP53. Notably, the squamous component harbored some specific mutations in SMARCA4 and SMARCB1 genes that code for members of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex. The common mutations in the undifferentiated and squamous cell carcinoma components from this analysis suggest that they originate from a common origin. The discussion also underscores the scarcity of genomic analyses on undifferentiated carcinoma of the pancreas, with existing literature pointing to SWI/SNF complex-related gene mutations. However, our case introduces chromatin remodeling factor mutations as relevant in squamous differentiation. In conclusion, this study provides valuable insights into the genomic landscape of undifferentiated pancreatic carcinoma with squamous differentiation. These findings suggest the importance of further research and targeted therapies to improve the management of undifferentiated carcinoma of the pancreas and enhance patient outcomes.

3.
Cancer Lett ; 588: 216815, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38490329

RESUMO

Epigenetic modifiers are upregulated during the process of prostate cancer, acquiring resistance to castration therapy and becoming lethal metastatic castration-resistant prostate cancer (CRPC). However, the relationship between regulation of histone modifications and chromatin structure in CRPC has yet not fully been validated. Here, we reanalyzed publicly available clinical transcriptome and clinical outcome data and identified NSD2, a histone methyltransferase that catalyzes H3K36me2, as an epigenetic modifier that was upregulated in CRPC and whose increased expression in prostate cancer correlated with higher recurrence rate. We performed ChIP-seq, RNA-seq, and Hi-C to conduct comprehensive epigenomic and transcriptomic analyses to identify epigenetic reprogramming in CRPC. In regions where H3K36me2 was increased, H3K27me3 was decreased, and the compartment was shifted from inactive to active. In these regions, 68 aberrantly activated genes were identified as candidate downstream genes of NSD2 in CRPC. Among these genes, we identified KIF18A as critical for CRPC growth. Under NSD2 upregulation in CRPC, epigenetic alteration with H3K36me2-gain and H3K27me3-loss occurs accompanying with an inactive-to-active compartment shift, suggesting that histone modification and chromatin structure cooperatively change prostate carcinogenesis.


Assuntos
Cromatina , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Cromatina/genética , Histonas/genética , Histonas/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Receptores Androgênicos/metabolismo , Cinesinas/metabolismo
4.
Nat Commun ; 15(1): 2588, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519457

RESUMO

We recently achieved the first-in-human transfusion of induced pluripotent stem cell-derived platelets (iPSC-PLTs) as an alternative to standard transfusions, which are dependent on donors and therefore variable in supply. However, heterogeneity characterized by thrombopoiesis-biased or immune-biased megakaryocytes (MKs) continues to pose a bottleneck against the standardization of iPSC-PLT manufacturing. To address this problem, here we employ microRNA (miRNA) switch biotechnology to distinguish subpopulations of imMKCLs, the MK cell lines producing iPSC-PLTs. Upon miRNA switch-based screening, we find imMKCLs with lower let-7 activity exhibit an immune-skewed transcriptional signature. Notably, the low activity of let-7a-5p results in the upregulation of RAS like proto-oncogene B (RALB) expression, which is crucial for the lineage determination of immune-biased imMKCL subpopulations and leads to the activation of interferon-dependent signaling. The dysregulation of immune properties/subpopulations, along with the secretion of inflammatory cytokines, contributes to a decline in the quality of the whole imMKCL population.


Assuntos
Células-Tronco Pluripotentes Induzidas , MicroRNAs , Humanos , Megacariócitos , Células-Tronco Pluripotentes Induzidas/metabolismo , Plaquetas/metabolismo , Trombopoese/genética , MicroRNAs/genética , MicroRNAs/metabolismo
5.
EBioMedicine ; 102: 105057, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490101

RESUMO

BACKGROUND: Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV)-associated malignant epithelial tumor endemic to Southern China and Southeast Asia. While previous studies have revealed a low frequency of gene mutations in NPC, its epigenomic aberrations are not fully elucidated apart from DNA hypermethylation. Epigenomic rewiring and enhancer dysregulation, such as enhancer hijacking due to genomic structural changes or extrachromosomal DNA, drive cancer progression. METHODS: We conducted Hi-C, 4C-seq, ChIP-seq, and RNA-seq analyses to comprehensively elucidate the epigenome and interactome of NPC using C666-1 EBV(+)-NPC cell lines, NP69T immortalized nasopharyngeal epithelial cells, clinical NPC biopsy samples, and in vitro EBV infection in HK1 and NPC-TW01 EBV(-) cell lines. FINDINGS: In C666-1, the EBV genome significantly interacted with inactive B compartments of host cells; the significant association of EBV-interacting regions (EBVIRs) with B compartment was confirmed using clinical NPC and in vitro EBV infection model. EBVIRs in C666-1 showed significantly higher levels of active histone modifications compared with NP69T. Aberrant activation of EBVIRs after EBV infection was validated using in vitro EBV infection models. Within the EBVIR-overlapping topologically associating domains, 14 H3K4me3(+) genes were significantly upregulated in C666-1. Target genes of EBVIRs including PLA2G4A, PTGS2 and CITED2, interacted with the enhancers activated in EBVIRs and were highly expressed in NPC, and their knockdown significantly reduced cell proliferation. INTERPRETATION: The EBV genome contributes to NPC tumorigenesis through "enhancer infestation" by interacting with the inactive B compartments of the host genome and aberrantly activating enhancers. FUNDING: The funds are listed in the Acknowledgements section.


Assuntos
Carcinoma , Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Herpesvirus Humano 4/genética , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Carcinogênese/genética , DNA , Proteínas Repressoras , Transativadores
6.
Oncology ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38262376

RESUMO

INTRODUCTION: Pseudomyxoma peritonei (PMP) is a disease characterized by progressive accumulation of intraperitoneal mucinous ascites produced by neoplasms in the abdominal cavity. Since the prognosis of patients with PMP remain unsatisfactory, the development of effective therapeutic drug(s) is a matter of pressing concern. Genetic analyses of PMP have clarified the frequent activation of GNAS and/or KRAS. However, the involvement of global epigenetic alterations in PMPs has not been reported. METHODS: To clarify the genetic background of the 15 PMP tumors, we performed genetic analysis using AmpliSeq Cancer HotSpot Panel v2. We further investigated global DNA methylation in the 15 tumors and eight non-cancerous colonic epithelial cells using Methylation EPIC array BeadChip (Infinium 850k) containing a total of 865,918 probes. RESULTS: This is the first report of comprehensive DNA methylation profiles of PMPs in the world. We clarified that the 15 PMPs could be classified into at least two epigenotypes, unique methylation epigenotype (UME) and normal-like methylation epigenotype (NLME), and that genes associated with neuronal development and synaptic signaling may be involved in the development of PMPs. In addition, we identified a set of hypermethylation marker genes such as HOXD1 and TSPYL5 in the 15 PMPs. CONCLUSIONS: These findings may help the understanding of the molecular mechanism(s) of PMP and contribute to the development of therapeutic strategies for this life-threatening disease.

7.
Cancer Res Commun ; 4(2): 279-292, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38240752

RESUMO

Gastric cancer metastasis is a major cause of mortality worldwide. Inhibition of RUNX3 in gastric cancer cell lines reduced migration, invasion, and anchorage-independent growth in vitro. Following splenic inoculation, CRISPR-mediated RUNX3-knockout HGC-27 cells show suppression of xenograft growth and liver metastasis. We interrogated the potential of RUNX3 as a metastasis driver in gastric cancer by profiling its target genes. Transcriptomic analysis revealed strong involvement of RUNX3 in the regulation of multiple developmental pathways, consistent with the notion that Runt domain transcription factor (RUNX) family genes are master regulators of development. RUNX3 promoted "cell migration" and "extracellular matrix" programs, which are necessary for metastasis. Of note, we found pro-metastatic genes WNT5A, CD44, and VIM among the top differentially expressed genes in RUNX3 knockout versus control cells. Chromatin immunoprecipitation sequencing and HiChIP analyses revealed that RUNX3 bound to the enhancers and promoters of these genes, suggesting that they are under direct transcriptional control by RUNX3. We show that RUNX3 promoted metastasis in part through its upregulation of WNT5A to promote migration, invasion, and anchorage-independent growth in various malignancies. Our study therefore reveals the RUNX3-WNT5A axis as a key targetable mechanism for gastric cancer metastasis. SIGNIFICANCE: Subversion of RUNX3 developmental gene targets to metastasis program indicates the oncogenic nature of inappropriate RUNX3 regulation in gastric cancer.


Assuntos
Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Genes Controladores do Desenvolvimento , Neoplasias Gástricas/genética , Regulação para Cima/genética
8.
Int J Cancer ; 154(5): 895-911, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37907830

RESUMO

Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC) cells have high metastatic potential. Recent research has revealed that the interaction of between tumor cells and the surrounding stroma plays an important role in tumor invasion and metastasis. In this study, we showed the prognostic value of expression of SPARC, an extracellular matrix protein with multiple cellular functions, in normal adjacent tissues (NAT) surrounding NPC. In the immunohistochemical analysis of 51 NPC biopsy specimens, SPARC expression levels were significantly elevated in the NAT of EBER (EBV-encoded small RNA)-positive NPC compared to that in the NAT of EBER-negative NPC. Moreover, increased SPARC expression in NAT was associated with a worsening of overall survival. The enrichment analysis of RNA-seq of publicly available NPC and NAT surrounding NPC data showed that high SPARC expression in NPC was associated with epithelial mesenchymal transition promotion, and there was a dynamic change in the gene expression profile associated with interference of cellular proliferation in NAT, including SPARC expression. Furthermore, EBV-positive NPC cells induce SPARC expression in normal nasopharyngeal cells via exosomes. Induction of SPARC in cancer-surrounding NAT cells reduced intercellular adhesion in normal nasopharyngeal structures and promoted cell competition between cancer cells and normal epithelial cells. These results suggest that epithelial cells loosen their own binding with the extracellular matrix as well as stromal cells, facilitating the invasion of tumor cells into the adjacent stroma by activating cell competition. Our findings reveal a new mechanism by which EBV creates a pro-metastatic microenvironment by upregulating SPARC expression in NPC.


Assuntos
Infecções por Vírus Epstein-Barr , Exossomos , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/metabolismo , Herpesvirus Humano 4/genética , Neoplasias Nasofaríngeas/patologia , Prognóstico , Exossomos/metabolismo , Microambiente Tumoral , Osteonectina/genética , Osteonectina/metabolismo
9.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139171

RESUMO

The interaction between mRNA and ribosomal RNA (rRNA) transcription in cancer remains unclear. RNAP I and II possess a common N-terminal tail (NTT), RNA polymerase subunit RPB6, which interacts with P62 of transcription factor (TF) IIH, and is a common target for the link between mRNA and rRNA transcription. The mRNAs and rRNAs affected by FUBP1-interacting repressor (FIR) were assessed via RNA sequencing and qRT-PCR analysis. An FIR, a c-myc transcriptional repressor, and its splicing form FIRΔexon2 were examined to interact with P62. Protein interaction was investigated via isothermal titration calorimetry measurements. FIR was found to contain a highly conserved region homologous to RPB6 that interacts with P62. FIRΔexon2 competed with FIR for P62 binding and coactivated transcription of mRNAs and rRNAs. Low-molecular-weight chemical compounds that bind to FIR and FIRΔexon2 were screened for cancer treatment. A low-molecular-weight chemical, BK697, which interacts with FIRΔexon2, inhibited tumor cell growth with rRNA suppression. In this study, a novel coactivation pathway for cancer-related mRNA and rRNA transcription through TFIIH/P62 by FIRΔexon2 was proposed. Direct evidence in X-ray crystallography is required in further studies to show the conformational difference between FIR and FIRΔexon2 that affects the P62-RBP6 interaction.


Assuntos
Neoplasias , Proteínas Repressoras , Humanos , Fatores de Processamento de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Processamento Alternativo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/metabolismo
10.
EMBO Rep ; 24(10): e57108, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37535603

RESUMO

The H3K4 methyltransferase SETD1A plays a crucial role in leukemia cell survival through its noncatalytic FLOS domain-mediated recruitment of cyclin K and regulation of DNA damage response genes. In this study, we identify a functional nuclear localization signal in and interaction partners of the FLOS domain. Our screen for FLOS domain-binding partners reveals that the SETD1A FLOS domain binds mitosis-associated proteins BuGZ/BUB3. Inhibition of both cyclin K and BuGZ/BUB3-binding motifs in SETD1A shows synergistic antileukemic effects. BuGZ/BUB3 localize to SETD1A-bound promoter-TSS regions and SETD1A-negative H3K4me1-positive enhancer regions adjacent to SETD1A target genes. The GLEBS motif and intrinsically disordered region of BuGZ are required for both SETD1A-binding and leukemia cell proliferation. Cell-cycle-specific SETD1A restoration assays indicate that SETD1A expression at the G1/S phase of the cell cycle promotes both the expression of DNA damage response genes and cell cycle progression in leukemia cells.


Assuntos
Leucemia , Mitose , Humanos , Mitose/genética , Ciclinas/genética , Ciclinas/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Leucemia/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética
11.
Cancer Sci ; 114(7): 3003-3013, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37082886

RESUMO

Lung adenocarcinoma is classified morphologically into five histological subtypes according to the WHO classification. While each histological subtype correlates with a distinct prognosis, the molecular basis has not been fully elucidated. Here we conducted DNA methylation analysis of 30 lung adenocarcinoma cases annotated with the predominant histological subtypes and three normal lung cases using the Infinium BeadChip. Unsupervised hierarchical clustering analysis revealed three subgroups with different methylation levels: high-, intermediate-, and low-methylation epigenotypes (HME, IME, and LME). Micropapillary pattern (MPP)-predominant cases and those with MPP components were significantly enriched in HME (p = 0.02 and p = 0.03, respectively). HME cases showed a significantly poor prognosis for recurrence-free survival (p < 0.001) and overall survival (p = 0.006). We identified 365 HME marker genes specifically hypermethylated in HME cases with enrichment of "cell morphogenesis" related genes; 305 IME marker genes hypermethylated in HME and IME, but not in LME, with enrichment "embryonic organ morphogenesis"-related genes; 257 Common marker genes hypermethylated commonly in all cancer cases, with enrichment of "regionalization"-related genes. We extracted surrogate markers for each epigenotype and designed pyrosequencing primers for five HME markers (TCERG1L, CXCL12, FAM181B, HOXA11, GAD2), three IME markers (TBX18, ZNF154, NWD2) and three Common markers (SCT, GJD2, BARHL2). DNA methylation profiling using Infinium data was validated by pyrosequencing, and HME cases defined by pyrosequencing results also showed the worse recurrence-free survival. In conclusion, lung adenocarcinomas are stratified into subtypes with distinct DNA methylation levels, and the high-methylation subtype correlated with MPP-predominant cases and those with MPP components and showed a poor prognosis.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Metilação de DNA/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Prognóstico , Biomarcadores , Neoplasias Pulmonares/patologia , Estadiamento de Neoplasias , Fatores de Transcrição Kruppel-Like/genética
13.
Gut ; 72(9): 1651-1663, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36918265

RESUMO

OBJECTIVE: Gastric cancer (GC) is a leading cause of cancer mortality, with ARID1A being the second most frequently mutated driver gene in GC. We sought to decipher ARID1A-specific GC regulatory networks and examine therapeutic vulnerabilities arising from ARID1A loss. DESIGN: Genomic profiling of GC patients including a Singapore cohort (>200 patients) was performed to derive mutational signatures of ARID1A inactivation across molecular subtypes. Single-cell transcriptomic profiles of ARID1A-mutated GCs were analysed to examine tumour microenvironmental changes arising from ARID1A loss. Genome-wide ARID1A binding and chromatin profiles (H3K27ac, H3K4me3, H3K4me1, ATAC-seq) were generated to identify gastric-specific epigenetic landscapes regulated by ARID1A. Distinct cancer hallmarks of ARID1A-mutated GCs were converged at the genomic, single-cell and epigenomic level, and targeted by pharmacological inhibition. RESULTS: We observed prevalent ARID1A inactivation across GC molecular subtypes, with distinct mutational signatures and linked to a NFKB-driven proinflammatory tumour microenvironment. ARID1A-depletion caused loss of H3K27ac activation signals at ARID1A-occupied distal enhancers, but unexpectedly gain of H3K27ac at ARID1A-occupied promoters in genes such as NFKB1 and NFKB2. Promoter activation in ARID1A-mutated GCs was associated with enhanced gene expression, increased BRD4 binding, and reduced HDAC1 and CTCF occupancy. Combined targeting of promoter activation and tumour inflammation via bromodomain and NFKB inhibitors confirmed therapeutic synergy specific to ARID1A-genomic status. CONCLUSION: Our results suggest a therapeutic strategy for ARID1A-mutated GCs targeting both tumour-intrinsic (BRD4-assocatiated promoter activation) and extrinsic (NFKB immunomodulation) cancer phenotypes.


Assuntos
Neoplasias Gástricas , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Neoplasias Gástricas/patologia , Proteínas Nucleares/genética , Epigenômica , Mutação , Microambiente Tumoral/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ciclo Celular/genética
14.
Int J Cancer ; 152(9): 1847-1862, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36650703

RESUMO

Human papillomavirus (HPV) is causally involved in the development of head and neck squamous cell carcinoma (HNSCC). The integration of HPV drives tumorigenesis through expression of oncogenic viral genes as well as genomic alterations in surrounding regions. To elucidate involvement of epigenetic dysregulation in tumorigenesis, we here performed integrated analyses of the epigenome, transcriptome and interactome using ChIP-seq, RNA-seq and Hi-C and 4C-seq for HPV(+) HNSCCs. We analyzed clinical HNSCC using The Cancer Genome Atlas data and found that genes neighboring HPV integration sites were significantly upregulated and were correlated with oncogenic phenotypes in HPV(+) HNSCCs. While we found four HPV integration sites in HPV(+) HNSCC cell line UPCI-SCC-090 through target enrichment sequencing, 4C-seq revealed 0.5 to 40 Mb of HPV-interacting regions (HPVIRs) where host genomic regions interacted with integrated HPV genomes. While 9% of the HPVIRs were amplified and activated epigenetically forming super-enhancers, the remaining non-amplified regions were found to show a significant increase in H3K27ac levels and an upregulation of genes associated with GO terms, for example, Signaling by WNT and Cell Cycle. Among those genes, ITPR3 was significantly upregulated, involving UPCI-SCC-090-specific super-enhancer formation around the ITPR3 promoter and in the 80-kb-downstream region. The knockdown of ITPR3 by siRNA or CRISPR deletions of the distant enhancer region led to a significant suppression of cell proliferation. The epigenetic activation of HPVIRs was also confirmed in other cell lines, UM-SCC-47 and UM-SCC-104. These data indicate that epigenetic activation in HPVIRs contributes, at least partially, to genesis of HPV(+) HNSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas/patologia , Papillomavirus Humano , Neoplasias de Cabeça e Pescoço/genética , Infecções por Papillomavirus/complicações , Papillomavirus Humano 16/genética , Carcinogênese/genética , Papillomaviridae/genética
15.
Gastric Cancer ; 26(1): 95-107, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36224483

RESUMO

BACKGROUND: Gastric cancer (GC) is characterized by unique DNA methylation epigenotypes (MEs). However, MEs including adenocarcinomas of the esophagogastric junction (AEG) and background non-neoplastic columnar mucosae (NM) remain to be clarified. METHODS: We analyzed the genome-wide DNA MEs of AEG, GC, and background NM using the Infinium 450 k beadarray, followed by quantitative pyrosequencing validation. Large-scale data from The Cancer Genome Atlas (TCGA) were also reviewed. RESULTS: Unsupervised two-way hierarchical clustering using Infinium data of 21 AEG, 30 GC, and 11 NM revealed four DNA MEs: extremely high-ME (E-HME), high-ME (HME), low-ME (LME), and extremely low-ME (E-LME). Promoter methylation levels were validated by pyrosequencing in 146 samples. Non-inflammatory normal mucosae were clustered into E-LME, whereas gastric or esophagogastric junction mucosae with chronic inflammatory changes caused by either Helicobacter pylori infection or reflux esophagitis were clustered together into LME, suggesting that inflammation status determined DNA MEs regardless of the cause. Three cases of Barrett's-related adenocarcinoma were clustered into HME. Among 94 patients whose tumors could be clustered into one of four MEs, 11 patients with E-LME cancers showed significantly shorter overall survival than that in the other MEs, even with the multivariate Cox regression estimate. TCGA data also showed enrichment of AEG in HME and a poorer prognosis in E-LME. CONCLUSIONS: E-LME cases, newly confirmed in this study, form a unique subtype with poor prognosis that is not associated with inflammation-associated elevation of DNA methylation levels. LME could be acquired via chronic inflammation, regardless of the cause, and AEG might preferentially show HME.


Assuntos
Adenocarcinoma , Neoplasias Esofágicas , Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Metilação de DNA , Infecções por Helicobacter/patologia , Neoplasias Gástricas/patologia , Junção Esofagogástrica/patologia , Neoplasias Esofágicas/patologia , Adenocarcinoma/patologia , Prognóstico , Inflamação
16.
Biochim Biophys Acta Mol Basis Dis ; 1869(2): 166598, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36372158

RESUMO

Nasopharyngeal carcinoma (NPC) is Epstein-Barr virus (EBV)-associated invasive malignancy. Increasing evidence indicates that epigenetic abnormalities, including DNA methylation, play important roles in the development of NPC. In particular, the EBV principal oncogene, latent membrane protein 1 (LMP1), is considered a key factor in inducing aberrant DNA methylation of several tumour suppressor genes in NPC, although the mechanism remains unclear. Herein, we comprehensively analysed the methylome data of Infinium BeadArray from 51 NPC and 52 normal nasopharyngeal tissues to identify LMP1-inducible methylation genes. Using hierarchical clustering analysis, we classified NPC into the high-methylation, low-methylation, and normal-like subgroups. We defined high-methylation genes as those that were methylated in the high-methylation subgroup only and common methylation genes as those that were methylated in both high- and low-methylation subgroups. Subsequently, we identified 715 LMP1-inducible methylation genes by observing the methylome data of the nasopharyngeal epithelial cell line with or without LMP1 expression. Because high-methylation genes were enriched with LMP1-inducible methylation genes, we extracted 95 high-methylation genes that overlapped with the LMP1-inducible methylation genes. Among them, we identified DERL3 as the most significantly methylated gene affected by LMP1 expression. DERL3 knockdown in cell lines resulted in significantly increased cell proliferation, migration, and invasion. Lower DERL3 expression was more frequently detected in the advanced T-stage NPC than in early T-stage NPC. These results indicate that DERL3 repression by DNA methylation contributes to NPC tumour progression.


Assuntos
Metilação de DNA , Infecções por Vírus Epstein-Barr , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Humanos , Infecções por Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/genética , Proteínas de Membrana/genética , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/virologia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/virologia
17.
Chem Biol Interact ; 369: 110257, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36375514

RESUMO

Compounds with 3,4-fused tricyclic indole (FTI) frameworks are attractive scaffolds for drug discovery. We synthesized FTI-6D, a compound with this framework, which was cytotoxic in several human cancer cell lines. FTI-6D induced apoptosis via activation of the p53 downstream mitochondria-related apoptotic pathway, characterized by an increased ratio of pro-apoptotic Bcl-2 family members to anti-apoptotic members. This change was followed by caspase-9 and caspase-3 cleavage and activation in two cancer cell lines, RKO and AGS. The anti-proliferating effect of FTI-6D was remarkably detected in eight cancer cells with wild-type TP53 (TP53_wt), including RKO and AGS, but not in seven cancer cells with mutated TP53 (TP53_mut). Additionally, p53 protein levels increased after FTI-6D treatment in TP53_wt cancer cells, and the cytotoxic effect of FTI-6D was decreased by TP53 knockdown. Accordingly, the expression of p53 downstream genes involved in apoptotic signaling pathways, such as BBC3 and TP53INP1, and those involved in cell growth inhibition, such as CDKN1A, was upregulated in TP53_wt cancer cells. These results suggest that the anti-proliferative and apoptosis-inducing activities of FTI-6D rely on p53 and the corresponding signaling processes. This study demonstrated that FTI-6D shows anti-cancer activity against TP53_wt cancer cells. FTI-6D may have potential as a prototype compound for a new drug to utilize a functional p53 pathway in TP53_wt cancer cells.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Genes p53 , Apoptose , Linhagem Celular Tumoral , Células HCT116 , Neoplasias/genética , Proteínas de Transporte/genética , Proteínas de Choque Térmico/metabolismo
18.
Cancer Med ; 12(2): 1122-1136, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35726701

RESUMO

Infection with certain viruses is an important cause of cancer. The Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium recently analyzed the whole-genome sequencing (WGS) data from 2656 cases across 21 cancer types, and indicated that Epstein-Barr virus (EBV) is detected in many different cancer cases at a higher frequency than previously reported. However, whether EBV-positive cancer cases detected by WGS-based screening correspond to those detected by conventional histopathological techniques is still unclear. In this study, to elucidate the involvement of EBV in various cancers, we reanalyzed the WGS data of the PCAWG cohort combined with the analysis of clinical samples of gastric and pancreatic cancer in our cohort. Based on EBV copy number in each case, we classified tumors into three subgroups: EBV-High, EBV-Low, and EBV-Negative. The EBV-High subgroup was found to be EBV-positive in the cancer cells themselves, whereas the EBV-Low subgroup was EBV-positive in the surrounding lymphocytes. Further, the EBV-Low subgroup showed a significantly worse prognosis for both gastric cancer and across cancer types. In summary, we classified tumors based on EBV copy number and found a unique cancer subgroup, EBV-positive in the surrounding lymphocytes, which was associated with a poor prognosis.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Gástricas , Humanos , Herpesvirus Humano 4/genética , Infecções por Vírus Epstein-Barr/diagnóstico , Linfócitos/patologia , Neoplasias Gástricas/patologia , Prognóstico
19.
Methods Mol Biol ; 2519: 127-140, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36066718

RESUMO

Hi-C is a method that analyzes genome-wide chromatin structure using next-generation sequencer. Chromatin structure is crucial for regulating transcription or replication, and Hi-C has revealed the hierarchical chromatin structures, such as loop, domain , and compartment structures. Aberrant alteration of these structures causes disease, and a number of structural aberrations in cancer cells have been reported recently. Besides, Hi-C can identify chromosome rearrangements that frequently occurred in cancer. Therefore, Hi-C is a powerful technique to analyze epigenomic and genomic aberrations in tumorigenesis. Here we will introduce the basic protocol of Hi-C in experimental and analytical aspects.


Assuntos
Cromatina , Neoplasias , Cromatina/genética , Cromossomos , Genoma , Genômica/métodos , Humanos , Neoplasias/genética
20.
EBioMedicine ; 98: 104844, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38251469

RESUMO

BACKGROUND: DNA methylation accumulates in non-malignant gastric mucosa after exposure to pathogens. To elucidate how environmental, methylation, and lifestyle factors interplay to influence primary gastric neoplasia (GN) risk, we analyzed longitudinally monitored cohorts in Japan and Singapore. METHODS: Asymptomatic subjects who underwent a gastric mucosal biopsy on the health check-up were enrolled. We analyzed the association between clinical factors and GN development using Cox hazard models. We further conducted comprehensive methylation analysis on selected tissues, including (i) mucosae from subjects developing GN later, (ii) mucosae from subjects not developing GN later, and (iii) GN tissues and surrounding mucosae. We also use the methylation data of mucosa collected in Singapore. The association between methylation and GN risk, as well as lifestyle and methylation, were analyzed. FINDINGS: Among 4234 subjects, GN was developed in 77 subjects. GN incidence was correlated with age, drinking, smoking, and Helicobacter pylori (HP) status. Accumulation of methylation in biopsied gastric mucosae was predictive of higher future GN risk and shorter duration to GN incidence. Whereas methylation levels were associated with HP positivity, lifestyle, and morphological alterations, DNA methylation remained an independent GN risk factor through multivariable analyses. Pro-carcinogenic epigenetic alterations initiated by HP exposure were amplified by unfavorable but modifiable lifestyle choices. Adding DNA methylation to the model with clinical factors improved the predictive ability for the GN risk. INTERPRETATION: The integration of environmental, lifestyle, and epigenetic information can provide increased resolution in the stratification of primary GN risk. FUNDING: The funds are listed in Acknowledgements section.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/etiologia , Neoplasias Gástricas/genética , Mucosa Gástrica , Estilo de Vida , Epigênese Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...