Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 7202, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37138046

RESUMO

In this study, we numerically demonstrate how the response of recently reported circuit-based metasurfaces is characterized by their circuit parameters. These metasurfaces, which include a set of four diodes as a full wave rectifier, are capable of sensing different waves even at the same frequency in response to the incident waveform, or more specifically the pulse width. This study reveals the relationship between the electromagnetic response of such waveform-selective metasurfaces and the SPICE parameters of the diodes used. In particular, we draw conclusions about how the SPICE parameters are related to (1) the high-frequency operation, (2) input power requirement and (3) dynamic range of waveform-selective metasurfaces with supporting simulation results. First, we show that reducing a parasitic capacitive component of the diodes is important for realization of the waveform-selective metasurfaces in a higher frequency regime. Second, we report that the operating power level is closely related to the saturation current and the breakdown voltage of the diodes. Moreover, the operating power range is found to be broadened by introducing an additional resistor into the inside of the diode bridge. Our study is expected to provide design guidelines for circuit-based waveform-selective metasurfaces to select/fabricate optimal diodes and enhance the waveform-selective performance at the target frequency and power level. Our results are usefully exploited to ensure the selectivity based on the pulse duration of the incident wave in a range of potential applications including electromagnetic interference, wireless power transfer, antenna design, wireless communications, and sensing.

2.
Neurosci Res ; 156: 66-79, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31991205

RESUMO

The present study compares the cortical local field potentials (LFPs) in the primary motor cortex (M1) and the supplementary motor area (SMA) of non-human primates rendered Parkinsonian with administration of dopaminergic neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. The dynamic of the LFPs was investigated under several mathematical frameworks and machine learning was used to discriminate the recordings based on these features between healthy, parkinsonian with off-medication and parkinsonian with on-medication states. The importance of each feature in the discrimination process was further investigated. The dynamic of the LFPs in M1 and SMA was affected regarding its variability (time domain analysis), oscillatory activities (frequency domain analysis) and complex patterns (non-linear domain analysis). Machine learning algorithms achieved accuracy near 0.90 for comparisons between conditions. The TreeBagger algorithm provided best accuracy. The relative importance of these features differed with the cortical location, condition and treatment. Overall, the most important features included beta oscillation, fractal dimension, gamma oscillation, entropy and asymmetry of amplitude fluctuation. The importance of features in discriminating between normal and pathological states, and on- or off-medication states depends on the pair-comparison and it is region-specific. These findings are discussed regarding the refinement of current models for movement disorders and the development of on-demand therapies.


Assuntos
Córtex Motor , Transtornos Parkinsonianos , Animais , Macaca mulatta , Aprendizado de Máquina
4.
J Pediatr Hematol Oncol ; 29(10): 716-9, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17921855

RESUMO

In this article, we first report a case of recurrent paroxysmal cold hemoglobinuria with serologic confirmation. On 2 occasions, the Donath-Landsteiner (DL) antibodies belonged to an IgM subclass and showed neither anti-P nor anti-I specificity. Furthermore, it is very interesting that the temperature thresholds of DL antibodies were different on each occasion. Although acute paroxysmal cold hemoglobinuria is considered to be self-limited and transient, we should be careful of its possible recurrence. DL tests must be repeated after the complete recovery from the first episode, with careful attention to several possible causes of false-negative DL tests.


Assuntos
Autoanticorpos/imunologia , Hemoglobinúria Paroxística/imunologia , Imunoglobulina M/imunologia , Pré-Escolar , Humanos , Sistema do Grupo Sanguíneo I/imunologia , Masculino , Recidiva , Temperatura
5.
Langmuir ; 22(4): 1449-54, 2006 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-16460060

RESUMO

Phase behavior of diglycerol fatty acid esters (Qn-D, where n represents the carbon number in the alkyl chain length of amphiphile, n = 10-16) were investigated in different nonpolar oils, liquid paraffin (LP70), squalane, and squalene. There is surfactant solid at lower temperature, and the surfactant solid does not swell in oil, and the melting temperature is almost constant in a wide range of compositions. In all of the systems, a lamellar liquid crystal (L(alpha)) is formed in a concentrated region at a temperature between the solid melting temperature and the isotropic two- or single-phase regions. In the dilute regions, reverse vesicles are formed in L(alpha) + O regions. There are two liquid-phase regions above the L(alpha) present region. This two-phase boundary corresponds to the cloud-point curve of nonionic surfactant aqueous solutions. However, instead of being less soluble in water at high temperature for the cloud point, the surfactant becomes more soluble in the organic solvents at high temperature. Namely, the effect of temperature on the solubility is opposite to the clouding phenomenon. When the hydrocarbon chain of the diglycerol surfactant decreases, the two-phase region becomes wider. In the case of a fixed surfactant, the surfactant is most miscible with squalene (narrowest two-phase regions) and the order of dissolutions tendency is squalene > LP70 > squalane. These results show that the hydrophilic moiety (diglycerol group) is more insoluble in oil compared with that of a conventional poly(oxyethylene)-type nonionic surfactant. Formation of reversed rodlike micelles was confirmed by SAXS scattering curve. When the hydrocarbon chain of surfactant is short, the micellar size becomes larger. In a fixed surfactant system, the reverse micellar size increases by changing oil from squalene to LP70. A small amount of water induces a dramatic elongation of reverse micelles.

6.
J Phys Chem B ; 110(2): 754-60, 2006 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-16471599

RESUMO

Upon the addition of a short EO chain nonionic surfactant, poly(oxyethylene) dodecyl ether (C12EOn), to dilute micellar solution of sodium dodecyl sulfate (SDS) above a particular concentration, a sharp increase in viscosity occurs and a highly viscoelastic micellar solution is formed. The oscillatory-shear rheological behavior of the viscoselastic solutions can be described by the Maxwell model at low shear frequency and combined Maxwell-Rouse model at high shear frequency. This property is typical of wormlike micelles entangled to form a transient network. It is found that when C12EO4 in the mixed system is replaced by C12EO3 the micellar growth occurs more effectively. However, with the further decrease in EO chain length, phase separation occurs before a viscoelastic solution is formed. As a result, the maximum zero-shear viscosity is observed at an appropriate mixing fraction of surfactant in the SDS-C12EO3 system. We also investigated the micellar growth in the mixed surfactant systems by means of small-angle X-ray scattering (SAXS). It was found from the SAXS data that the one-dimensional growth of micelles was obtained in all the SDS-C12EOn (n=0-4) aqueous solutions. In a short EO chain C12EOn system, the micelles grow faster at a low mixing fraction of nonionic surfactant.

7.
Langmuir ; 20(6): 2164-71, 2004 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-15835666

RESUMO

The phase behavior of a mixture of poly(isoprene)-poly(oxyethylene) diblock copolymer (PI-PEO or C250EO70) and poly(oxyethylene) surfactant (C12EO3, C12EO5, C12EO6, C12EO7, and C12EO9) in water was investigated by phase study, small-angle X-ray scattering, and dynamic light scattering (DLS). The copolymer is not soluble in surfactant micellar cubic (I1), hexagonal (H1), and lamellar (Lalpha) liquid crystals, whereas an isotropic copolymer fluid phase coexists with these liquid crystals. Although the PI-PEO is relatively lipophilic, it increases the cloud temperatures of C12EO3-9 aqueous solutions at a relatively high PI-PEO content in the mixture. Most probably, in the copolymer-rich region, PI-PEO and C12EOn form a spherical composite micelle in which surfactant molecules are located at the interface and the PI chains form an oil pool inside. In the C12EO5/ and C12EO6/PI-PEO systems, one kind of micelles is produced in the wide range of mixing fraction, although macroscopic phase separation was observed within a few days after the sample preparation. On the other hand, small surfactant micelles coexist with copolymer giant micelles in C12EO7/ and C12EO9/PI-PEO aqueous solutions in the surfactant-rich region. The micellar shape and size are calculated using simple geometrical relations and compared with DLS data. Consequently, a large PI-PEO molecule is not soluble in surfactant bilayers (Lalpha phase), infinitely long rod micelles (H1 phase), and spherical micelles (I1 phase or hydrophilic spherical micelles) as a result of the packing constraint of the large PI chain. However, the copolymer is soluble in surfactant rod micelles (C12EO5 and C12EO6) because a rod-sphere transition of the surfactant micelles takes place and the long PI chains are incorporated inside the large spherical micelles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...