Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bone ; 137: 115321, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32184195

RESUMO

Quantitative computed tomography (QCT) based finite element (FE) models can compute subject-specific proximal femoral strengths, or fracture loads, that are associated with hip fracture risk. These fracture loads are more strongly associated with measured fracture loads than are DXA and QCT measures and are predictive of hip fracture independently of DXA bone mineral density (BMD). However, interpreting FE-computed fracture loads of younger subjects for the purpose of evaluating hip fracture risk in old age is challenging due to limited reference data. The goal of this study was to address this issue by providing reference data for male and female adult subjects of all ages. QCT-based FE models of the left proximal femur of 216 women and 181 men, age 27 to 90 years, from a cohort of Rochester, MN residents were used to compute proximal femoral load capacities, i.e. the maximum loads that can be supported, in single-limb stance and posterolateral fall loading (Stance_LC and Fall_LC, respectively) [US Patent No. 9,245,069] and yield load under fall loading (Fall_yield). To relate these measures to information about hip fracture, the CT scanner and calibration phantom were cross-calibrated with those from our previous prospective study of hip fracture in older fracture and control subjects, the Age Gene/Environment Susceptibility (AGES) Reykjavik cohort. We then plotted Stance_LC, Fall_LC and Fall_yield versus age for the two cohorts on the same graphs. Thus, proximal femoral strengths in individuals above 70 years of age can be assessed through direct comparison with the FE data from the AGES cohort which were analyzed using identical methods. To evaluate younger individuals, reductions in Stance_LC, Fall_LC and Fall_yield from the time of evaluation to age 70 years can be cautiously estimated from the average yearly cross-sectional decreases found in this study (108 N, 19.4 N and 14.4 N, respectively, in men and 120 N, 19.4 N and 21.6 N, respectively, in women), and the projected fracture loads can be compared with data from the AGES cohort. Although we did not set specific thresholds for identifying individuals at risk of hip fracture, these data provide some guidance and may be used to help establish diagnostic criteria in future. Additionally, given that these data were nearly entirely from Caucasian subjects, future research involving subjects of other races/ethnicities is necessary.


Assuntos
Fraturas do Quadril , Adulto , Idoso , Idoso de 80 Anos ou mais , Densidade Óssea , Estudos Transversais , Feminino , Fêmur/diagnóstico por imagem , Análise de Elementos Finitos , Fraturas do Quadril/diagnóstico por imagem , Fraturas do Quadril/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
2.
Phys Med Biol ; 57(13): 4387-401, 2012 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-22705967

RESUMO

Vertebral metastases are a common manifestation of many cancers, potentially leading to vertebral collapse and neurological complications. Conventional treatment often involves percutaneous vertebroplasty/kyphoplasty followed by external beam radiation therapy. As a more convenient alternative, we have introduced radioactive bone cement, i.e. bone cement incorporating a radionuclide. In this study, we used a previously developed Monte Carlo radiation transport modeling method to evaluate dose distributions from phosphorus-32 radioactive cement in simulated clinical scenarios. Isodose curves were generally concentric about the surface of bone cement injected into cadaveric vertebrae, indicating that dose distributions are relatively predictable, thus facilitating treatment planning (cement formulation and dosimetry method are patent pending). Model results indicated that a therapeutic dose could be delivered to tumor/bone within ∼4 mm of the cement surface while maintaining a safe dose to radiosensitive tissue beyond this distance. This therapeutic range should be sufficient to treat target volumes within the vertebral body when tumor ablation or other techniques are used to create a cavity into which the radioactive cement can be injected. With further development, treating spinal metastases with radioactive bone cement may become a clinically useful and convenient alternative to the conventional two-step approach of percutaneous strength restoration followed by radiotherapy.


Assuntos
Cimentos Ósseos/uso terapêutico , Neoplasias Ósseas/radioterapia , Neoplasias Ósseas/secundário , Feminino , Humanos , Radiometria , Dosagem Radioterapêutica , Coluna Vertebral/efeitos da radiação
3.
Phys Med Biol ; 55(9): 2451-63, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20371905

RESUMO

Spinal metastases are a common and serious manifestation of cancer, and are often treated with vertebroplasty/kyphoplasty followed by external beam radiation therapy (EBRT). As an alternative, we have introduced radioactive bone cement, i.e. bone cement incorporated with a radionuclide. In this study, we present a Monte Carlo radiation transport modeling method to calculate dose distributions within vertebrae containing radioactive cement. Model accuracy was evaluated by comparing model-predicted depth-dose curves to those measured experimentally in eight cadaveric vertebrae using radiochromic film. The high-gradient regions of the depth-dose curves differed by radial distances of 0.3-0.9 mm, an improvement over EBRT dosimetry accuracy. The low-gradient regions differed by 0.033-0.055 Gy/h/mCi, which may be important in situations involving prior spinal cord irradiation. Using a more rigorous evaluation of model accuracy, four models predicted the measured dose distribution within the experimental uncertainty, as represented by the 95% confidence interval of the measured log-linear depth-dose curve. The remaining four models required modification to account for marrow lost from the vertebrae during specimen preparation. However, the accuracy of the modified model results indicated that, when this source of uncertainty is accounted for, this modeling method can be used to predict dose distributions in vertebrae containing radioactive cement.


Assuntos
Cimentos Ósseos , Modelos Biológicos , Radiação , Medula Óssea/diagnóstico por imagem , Medula Óssea/efeitos da radiação , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/efeitos da radiação , Feminino , Humanos , Injeções , Método de Monte Carlo , Medicina de Precisão , Dosagem Radioterapêutica , Tomografia Computadorizada por Raios X
4.
Plant Cell Rep ; 15(6): 409-13, 1996 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24178419

RESUMO

The effects of brefeldin A (BFA) on the secretion of acid phosphatase (APase) by tobacco protoplasts were investigated. Secretion of APase was inhibited by BFA in a dose-dependent manner, with a concomitant intracellular accumulation of the enzyme. The secreted APase was composed of two isoforms. BFA (10/ µg/ml) inhibited the secretion of one of the isoforms without inhibiting that of the other, and this phenomenon explains the partial inhibition of APase secretion as a whole. The inhibition of APase secretion was accompanied by changes in the morphology of the Golgi apparatus and also by an increment in massdensity of cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA