Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 24(8): 2287-2297, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38506394

RESUMO

We introduce a simple integrated analysis method that links cellular phenotypic behaviour with single-cell RNA sequencing (scRNA-seq) by utilizing a combination of optical indices from cells and hydrogel beads. With our method, the combinations, referred to as joint colour codes, enable the link via matching the optical combinations measured by conventional epi-fluorescence microscopy with the concatenated DNA molecular barcodes created by cell-hydrogel bead pairs and sequenced by next-generation sequencing. We validated our approach by demonstrating an accurate link between the cell image and scRNA-seq with mixed species experiments, longitudinal cell tagging by electroporation and lipofection, and gene expression analysis. Furthermore, we extended our approach to multiplexed chemical transcriptomics, which enabled us to identify distinct phenotypic behaviours in HeLa cells treated with various concentrations of paclitaxel, and determine the corresponding gene regulation associated with the formation of a multipolar spindle.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Humanos , Células HeLa , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Hidrogéis , Análise de Célula Única/métodos , Análise de Sequência de RNA/métodos
2.
Methods Mol Biol ; 2430: 105-119, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35476328

RESUMO

Microtubule (MT)-motor systems show promise as nanoscale actuator platforms for performing molecular manipulations in nanobiotechnology and micro total analysis systems. These systems have been demonstrated to exert a variety of functions, including the concentration, transportation, and detection of molecular cargos. Although gliding direction control of MTs is necessary for these applications, most direction control methods are currently conducted using micro/nanofabricated guiding structures and/or flow, magnetic, and electric field forces. These control methods force all MTs to exhibit identical gliding behaviors and destinations. In this chapter, we describe an active multidirectional control method for MT without guiding tracks. The bottom-up molecular design allowed MTs to be guided in designated directions under an electric field in a microfluidic device. By designing the stiffness and surface charge density of MTs, three types of MT (Stiff-MT, Soft-MT, and Charged soft-MT) with different mechanical and electrical properties are prepared. The gliding directions within an electric field are predicted according to the measured stiffness and electrophoretic mobility. Finally, the Stiff-MTs are separated from Soft-MTs and Charged soft-MTs with a microfluidic sorter.


Assuntos
Fenômenos Mecânicos , Microtúbulos , Eletricidade , Microtúbulos/química
3.
Sci Adv ; 6(4): eaax7413, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32010782

RESUMO

Kinesin is a motor protein that plays important roles in a variety of cellular functions. In vivo, multiple kinesin molecules are bound to cargo and work as a team to produce larger forces or higher speeds than a single kinesin. However, the coordination of kinesins remains poorly understood because of the experimental difficulty in controlling the number and arrangement of kinesins, which are considered to affect their coordination. Here, we report that both the number and spacing significantly influence the velocity of microtubules driven by nonprocessive kinesin-14 (Ncd), whereas neither the number nor the spacing changes the velocity in the case of highly processive kinesin-1. This result was realized by the optimum nanopatterning method of kinesins that enables immobilization of a single kinesin on a nanopillar. Our proposed method enables us to study the individual effects of the number and spacing of motors on the collective dynamics of multiple motors.


Assuntos
Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas Motores Moleculares/metabolismo , Ouro/química , Humanos , Cinética , Imagem Molecular , Nanofibras/química , Análise Espectral
4.
Nanoscale ; 11(20): 9879-9887, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-30888373

RESUMO

Motor proteins function in in vivo ensembles to achieve cargo transport, flagellum motion, and mitotic cell division. Although the cooperativity of multiple motors is indispensable for physiological function, reconstituting the arrangement of motors in vitro is challenging, so detailed analysis of the functions of motor ensembles has not yet been achieved. Here, we developed an assay platform to study the motility of microtubules driven by a defined number of kinesin motors spaced in a definite manner. Gold (Au) nano-pillar arrays were fabricated on a silicon/silicon dioxide (Si/SiO2) substrate with spacings of 100 nm to 500 nm. The thiol-polyethylene glycol (PEG)-biotin self-assembled monolayer (SAM) and silane-PEG-CH3 SAM were then selectively formed on the pillars and SiO2 surface, respectively. This allowed for both immobilization of kinesin molecules on Au nano-pillars in a precise manner and repulsion of kinesins from the SiO2 surface. Using arrayed kinesin motors, we report that motor number and spacing do not influence the motility of microtubules driven by kinesin-1 motors. This assay platform is applicable to all kinds of biotinylated motors, allows the study of the effects of motor number and spacing, and is expected to reveal novel behaviors of motor proteins.


Assuntos
Ouro/química , Cinesinas/química , Biotina/química , Proteínas Imobilizadas/química , Polietilenoglicóis/química , Dióxido de Silício/química , Compostos de Sulfidrila/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...