Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comp Neurol ; 526(12): 1943-1961, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29752714

RESUMO

The dI1 commissural axons in the developing spinal cord, upon crossing the midline through the floor plate, make a sharp turn to grow rostrally. These post-crossing axons initially just extend adjacent to the floor plate without entering nearby motor columns. However, it remains poorly characterized how these post-crossing dI1 axons behave subsequently to this process. In the present study, to address this issue, we examined in detail the behavior of post-crossing dI1 axons in mice, using the Atoh1 enhancer-based conditional expression system that enables selective and sparse labeling of individual dI1 axons, together with Hb9 and ChAT immunohistochemistry for precise identification of spinal motor neurons (MNs). We found unexpectedly that the post-crossing segment of dI1 axons later gave off collateral branches that extended laterally to invade motor columns. Interestingly, these collateral branches emerged at around the time when their primary growth cones initiated invasion into motor columns. In addition, although the length of the laterally growing collateral branches increased with age, the majority of them remained within motor columns. Strikingly, these collateral branches further gave rise to multiple secondary branches in the region of MNs that innervate muscles close to the body axis. Moreover, these axonal branches formed presynaptic terminals on MNs. These observations demonstrate that dI1 commissural neurons develop axonal projection to spinal MNs via collateral branches arising later from the post-crossing segment of these axons. Our findings thus reveal a previously unrecognized projection of dI1 commissural axons that may contribute directly to generating proper motor output.


Assuntos
Axônios , Interneurônios Comissurais/citologia , Neurônios Motores/citologia , Neurogênese/fisiologia , Medula Espinal/citologia , Animais , Camundongos , Camundongos Endogâmicos ICR
2.
J Comp Neurol ; 524(5): 999-1014, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26356789

RESUMO

Target recognition by developing axons is one of the fundamental steps for establishing the proper pattern of neuronal connectivity during development. However, knowledge of the mechanisms that underlie this critical event is still limited. In this study, to examine how commissural axons in vertebrates recognize their targets after crossing the midline, we analyzed in detail the behavior of postcrossing commissural axons derived from the deep cerebellar nuclei (DCN) in the developing mouse cerebellum. For this, we employed a cell-type-specific genetic labeling approach to selectively visualize DCN axons during the time when these axons project to the red nucleus (RN), one of the well-characterized targets of DCN axons. We found that, when DCN axons initially entered the RN at its caudal end, these axons continued to grow rostrally through the RN without showing noticeable morphological signs of axon branching. Interestingly, after a delay, DCN axons started forming interstitial branches from the portion of the axon shaft selectively within the RN. Because commissural axons acquire responsiveness to several guidance cues when they cross the midline, we further addressed whether midline crossing is a prerequisite for subsequent targeting by using a Robo3 knockdown strategy. We found that DCN axons were still capable of forming interstitial branches within the RN even in the absence of midline crossing. These results therefore suggest that the mechanism of RN recognition by DCN axons involves a delayed interstitial branching, and that these axons possess an intrinsic ability to respond to the target-derived cues irrespective of midline crossing.


Assuntos
Axônios/ultraestrutura , Movimento Celular , Núcleos Cerebelares/citologia , Interneurônios Comissurais/ultraestrutura , Núcleo Rubro/citologia , Animais , Núcleos Cerebelares/embriologia , Feminino , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos ICR , Gravidez , Núcleo Rubro/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...