Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34577348

RESUMO

With the advancement of miniaturization in electronics and the ubiquity of micro-electro-mechanical systems (MEMS) in different applications including computing, sensing and medical apparatus, the importance of increasing production yields and ensuring the quality standard of products has become an important focus in manufacturing. Hence, the need for high-accuracy and automatic defect detection in the early phases of MEMS production has been recognized. This not only eliminates human interaction in the defect detection process, but also saves raw material and labor required. This research developed an automated defects recognition (ADR) system using a unique plenoptic camera capable of detecting surface defects of MEMS wafers using a machine-learning approach. The developed algorithm could be applied at any stage of the production process detecting defects at both entire MEMS wafer and single component scale. The developed system showed an F1 score of 0.81 U on average for true positive defect detection, with a processing time of 18 s for each image based on 6 validation sample images including 371 labels.


Assuntos
Sistemas Microeletromecânicos , Algoritmos , Humanos , Inteligência , Aprendizado de Máquina
2.
Sensors (Basel) ; 19(24)2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31835544

RESUMO

High-temperature (HT) ultrasonic transducers are of increasing interest for structural health monitoring (SHM) of structures operating in harsh environments. This article focuses on the development of an HT piezoelectric wafer active sensor (HT-PWAS) for SHM of HT pipelines using ultrasonic guided waves. The PWAS was fabricated using Y-cut gallium phosphate (GaPO4) to produce a torsional guided wave mode on pipes operating at temperatures up to 600 °C. A number of confidence-building tests on the PWAS were carried out. HT electromechanical impedance (EMI) spectroscopy was performed to characterise piezoelectric properties at elevated temperatures and over long periods of time (>1000 h). Laser Doppler vibrometry (LDV) was used to verify the modes of vibration. A finite element model of GaPO4 PWAS was developed to model the electromechanical behaviour of the PWAS and the effect of increasing temperatures, and it was validated using EMI and LDV experimental data. This study demonstrates the application of GaPO4 for guided-wave SHM of pipelines and presents a model that can be used to evaluate different transducer designs for HT applications.

3.
Sensors (Basel) ; 18(7)2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-30004448

RESUMO

The accumulation of fouling within a structure is a well-known and costly problem across many industries. The build-up is dependent on the environmental conditions surrounding the fouled structure. Many attempts have been made to detect fouling accumulation in critical engineering structures and to optimize the application of power ultrasonic fouling removal procedures, i.e., flow monitoring, ultrasonic guided waves and thermal imaging. In recent years, the use of ultrasonic guided waves has been identified as a promising technology to detect fouling deposition/growth. This technology also has the capability to assess structural health; an added value to the industry. The use of ultrasonic guided waves for structural health monitoring is established but fouling detection using ultrasonic guided waves is still in its infancy. The present study focuses on the characterization of fouling detection using ultrasonic guided waves. A 6.2-m long 6-inch schedule 40 carbon steel pipe has been used to study the effect of (Calcite) fouling on ultrasonic guided wave propagation within the structure. Parameters considered include frequency selection, number of cycles and dispersion at incremental fouling thickness. According to the studied conditions, a 0.5 dB/m drop in signal amplitude occurs for a fouling deposition of 1 mm. The findings demonstrate the potential to detect fouling build-up in lengthy pipes and to quantify its thickness by the reduction in amplitude found from further numerical investigation. This variable can be exploited to optimize the power ultrasonic fouling removal procedure.

4.
Sensors (Basel) ; 17(11)2017 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-29113058

RESUMO

There is an increasing interest in using ultrasonic guided waves to assess the structural degradation of above-ground storage tank floors. This is a non-invasive and economically viable means of assessing structural degradation. Above-ground storage tank floors are ageing assets which need to be inspected periodically to avoid structural failure. At present, normal-stress type transducers are bonded to the tank annular chime to generate a force field in the thickness direction of the floor and excite fundamental symmetric and asymmetric Lamb modes. However, the majority of above-ground storage tanks in use have no annular chime due to a simplified design and/or have a degraded chime due to corrosion. This means that transducers cannot be mounted on the chime to assess structural health according to the present technology, and the market share of structural health monitoring of above-ground storage tank floors using ultrasonic guided wave is thus limited. Therefore, the present study investigates the potential of using the tank wall to bond the transducer instead of the tank annular chime. Both normal and shear type transducers were investigated numerically, and results were validated using a 4.1 m diameter above-ground storage tank. The study results show shear mode type transducers bonded to the tank wall can be used to assess the structural health of the above-ground tank floors using an ultrasonic guided wave. It is also shown that for the cases studied there is a 7.4 dB signal-to-noise ratio improvement at 45 kHz for the guided wave excitation on the tank wall using shear mode transducers.

5.
J Acoust Soc Am ; 125(2): 863-72, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19206863

RESUMO

During lift-off, space launchers are submitted to high-level of acoustic loads, which may damage sensitive equipments. A special acoustic absorber has been previously integrated inside the fairing of space launchers to protect the payload. A new research project has been launched to develop a low cost fairing acoustic protection system using optimized layers of porous materials covered by a thin layer of fabric. An analytical model is used for the analysis of acoustic wave propagation within the multilayer porous media. Results have been validated by impedance tube measurements. A parametric study has been conducted to determine optimal mechanical and acoustical properties of the acoustic protection under dimensional thickness constraints. The effect of the mounting conditions has been studied. Results reveal the importance of the lateral constraints on the absorption coefficient particularly in the low frequency range. A transmission study has been carried out, where the fairing structure has been simulated by a limp mass layer. The transmission loss and noise reduction factors have been computed using Biot's theory and the local acoustic impedance approximation to represent the porous layer effect. Comparisons between the two models show the frequency domains for which the local impedance model is valid.


Assuntos
Acústica/instrumentação , Modelos Teóricos , Ruído dos Transportes/prevenção & controle , Astronave , Absorção , Módulo de Elasticidade , Desenho de Equipamento , Movimento (Física) , Porosidade , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...