Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 736: 139656, 2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32485387

RESUMO

The complex mixtures of local emission sources and regional transportations of air pollutants make accurate PM2.5 prediction a very challenging yet crucial task, especially under high pollution conditions. A symbolic representation of spatio-temporal PM2.5 features is the key to effective air pollution regulatory plans that notify the public to take necessary precautions against air pollution. The self-organizing map (SOM) can cluster high-dimensional datasets to form a meaningful topological map. This study implements the SOM to effectively extract and clearly distinguish the spatio-temporal features of long-term regional PM2.5 concentrations in a visible two-dimensional topological map. The spatial distribution of the configured topological map spans the long-term datasets of 25 monitoring stations in northern Taiwan using the Kriging method, and the temporal behavior of PM2.5 concentrations at various time scales (i.e., yearly, seasonal, and hourly) are explored in detail. Finally, we establish a machine learning model to predict PM2.5 concentrations for high pollution events. The analytical results indicate that: (1) high population density and heavy traffic load correspond to high PM2.5 concentrations; (2) the change of seasons brings obvious effects on PM2.5 concentration variation; and (3) the key input variables of the prediction model identified by the Gamma Test can improve model's reliability and accuracy for multi-step-ahead PM2.5 prediction. The results demonstrated that machine learning techniques can skillfully summarize and visibly present the clusted spatio-temporal PM2.5 features as well as improve air quality prediction accuracy.

2.
Sci Total Environ ; 651(Pt 1): 230-240, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30243160

RESUMO

Air quality deteriorates fast under urbanization in recent decades. Reliable and precise regional multi-step-ahead PM2.5 forecasts are crucial and beneficial for mitigating health risks. This work explores a novel framework (MM-SVM) that combines the Multi-output Support Vector Machine (M-SVM) and the Multi-Task Learning (MTL) algorithm for effectively increasing the accuracy of regional multi-step-ahead forecasts through tackling error accumulation and propagation that is commonly encountered in regional forecasting. The Single-output SVM (S-SVM) is implemented as a benchmark. Taipei City of Taiwan is our study area, where three types of air quality monitoring stations are selected to represent areas imposed with high traffic influences, high human activities and commercial trading influences, and less human interventions close to nature situation, respectively. We consider forecasts of PM2.5 concentrations as a function of meteorological and air quality factors based on long-term (2010-2016) observational datasets. Firstly, the Kendall tau coefficient is conducted to extract key spatiotemporal factors from regional meteorological and air quality inputs. Secondly, the M-SVM model is trained by the MTL to capture non-linear relationships and share correlation information across related tasks. Lastly, the MM-SVM model is validated using hourly time series of PM2.5 concentrations as well as meteorological and air quality datasets. Regarding the applicability of regional multi-step-ahead forecasts, the results demonstrate that the MM-SVM model is much more promising than the S-SVM model because only one forecast model (MM-SVM) is required, instead of constructing a site-specific S-SVM model for each station. Moreover, the forecasts of the MM-SVM are found better consistent with observations than those of any single S-SVM in both training and testing stages. Consequently, the results clearly demonstrate that the MM-SVM model could be recommended as a novel integrative technique for improving the spatiotemporal stability and accuracy of regional multi-step-ahead PM2.5 forecasts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...