Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36560059

RESUMO

Wearable exoskeleton robots have become a promising technology for supporting human motions in multiple tasks. Activity recognition in real-time provides useful information to enhance the robot's control assistance for daily tasks. This work implements a real-time activity recognition system based on the activity signals of an inertial measurement unit (IMU) and a pair of rotary encoders integrated into the exoskeleton robot. Five deep learning models have been trained and evaluated for activity recognition. As a result, a subset of optimized deep learning models was transferred to an edge device for real-time evaluation in a continuous action environment using eight common human tasks: stand, bend, crouch, walk, sit-down, sit-up, and ascend and descend stairs. These eight robot wearer's activities are recognized with an average accuracy of 97.35% in real-time tests, with an inference time under 10 ms and an overall latency of 0.506 s per recognition using the selected edge device.


Assuntos
Aprendizado Profundo , Exoesqueleto Energizado , Robótica , Dispositivos Eletrônicos Vestíveis , Humanos , Atividades Humanas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA