Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(34): 40976-40985, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34407611

RESUMO

Among various available materials used in transparent and flexible devices, MXenes are attracting attention as a brand-new candidate in this category. Ti3C2Tx MXene as a 2D material has exceptional properties, making it a potential material having numerous applications in different areas. Because of its high conductivity, it can be used in transparent conducting electrodes (TCEs). In this study, the MXenes etched by highly concentrated acid at 50 °C,were spin-coated on polyethylene terephthalate (PET) film and annealed at moderate temperatures up to 170 °C. The adhesion of MXene to PET was found to be remarkably improved by annealing. These TCEs exhibited a sheet resistance of ∼424 Ω/sq. and transmittance of ∼87%. The aging stability of MXene-coated PET films against oxidation under ambient conditions was studied up to 28 days and resistance change was found ∼30% during this period. The flexibility test showed low bending resistance change (∼1.5%) at 1000th cycle and cumulative resistance change of ∼20% at a bending radius of ∼3.9 mm after 1000 cycles. These transparent, flexible, and conducting electrodes were used to fabricate polymer dispersed liquid crystal (PDLC)-based flexible smart windows. The smart windows fabricated by curing PDLC mixture sandwiched between the MXene electrodes were also found flexible in ON/OFF states. The MXene-based flexible smart windows resulted in good opacity in the OFF state and high transparency in the ON state, exhibiting low threshold voltage <10 V and high transmittance ∼80% at 60 V. The flexible smart windows operated normally even at ∼4 mm bending radius.

2.
Nano Lett ; 20(3): 1934-1943, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32083883

RESUMO

Among p-n junction devices with multilayered heterostructures with WSe2 and MoSe2, a device with the MoSe2-WSe2-MoSe2 (NPN) structure showed a remarkably high photoresponse, which was 1000 times higher than the MoSe2-WSe2 (NP) structure. The ideality factor of the NPN structure was estimated to be ∼1, lower than that of the NP structure. It is claimed that the NPN structure formed a thinner depletion region than that of the NP structure because of the difference of carrier concentrations of MoSe2 and WSe2. Hence, the built-in electric field was weaker, and the motion of the photocarriers was facilitated. These behaviors were confirmed experimentally from a photocurrent mapping analysis and Kelvin probe force microscopy. The work function depended on the wavelength of the illuminator, and quasi-Fermi level was estimated. The surface photovoltage on the MoSe2 region was higher than that on WSe2 because the lower bandgap of MoSe2 induces more electron-hole pair generation.

3.
RSC Adv ; 10(68): 41837-41845, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-35516536

RESUMO

The effect of Ti3C2T x MXene etched at different temperatures (25 °C, 50 °C, and 80 °C) on the capacitance of supercapacitors without the use of conducting carbon-black or a binder was studied. The MXene etched using concentrated HCl acid (12 M)/LiF was used as an active electrode and Ni-foil as a current collector. It was observed that the elevated etching temperature facilitates the etching of the MAX phase and the exfoliation of MXene layers. However, this led to the formation of additional functional groups at the MXene surface as the temperature was increased to 80 °C. The specific capacitance of Ti3C2T x -based supercapacitors increased from 581 F g-1 for MXene etched at 25 °C to 657 F g-1 for those etched at 50 °C at the scan rate of 2 mV s-1. However, the specific capacitance reduced to 421 F g-1 as the etching temperature was increased to 80 °C at the same scan rate. The supercapacitors based on MXenes etched at the intermediate temperature (50 °C) exhibited higher specific capacitance in a wide range of scan rate, symmetry in charge/discharge curves, high cyclic stability at a scan rate of 1000 mV s-1 for up to 3000 cycles. The electrochemical impedance spectroscopy studies indicated low series resistance, reduced charge-transfer resistance, and decreased Warburg impedance for the supercapacitor based on the MXene etched at the intermediate temperature.

4.
ACS Appl Mater Interfaces ; 11(2): 2470-2478, 2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30561182

RESUMO

Lattice matching has been supposed to play an important role in the coupling between two materials in a vertical heterostructure (HS). To investigate this role, we fabricated a heterojunction device with a few layers of p-type WSe2 and n-type MoSe2 with different crystal orientation angles. The crystal orientations of WSe2 and MoSe2 were estimated using high-resolution X-ray diffraction. Heterojunction devices were fabricated with twist angles of 0, 15, and 30°. The I- V curve of the sample with the twist angle of 0° under the dark condition showed a diodelike behavior. The strong coupling due to lattice matching caused a well-established p-n junction. In cases of 15 and 30° samples, the van der Waals gap was built because of lattice mismatching, which resulted in the formation of a potential barrier. However, when the light-emitting diode light of 365 nm (3.4 eV) was illuminated, it was possible for excited electrons and holes to jump beyond the potential barrier and the current flowed well in both forward and reverse directions. The effects of the twist angle were analyzed by spectral responsivity and external quantum efficiency, where it was found that the untwisted HS exhibited higher sensitivity under IR illumination, whereas the twisting effect was not noticeable under UV illumination. From photoluminescence and Raman spectroscopy studies, it was confirmed that the twisted HS showed a weak coupling because of the lattice mismatch.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA