Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
EMBO Rep ; 24(11): e56166, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37870275

RESUMO

ZNF746 was identified as parkin-interacting substrate (PARIS). Investigating its pathophysiological properties, we find that PARIS undergoes liquid-liquid phase separation (LLPS) and amorphous solid formation. The N-terminal low complexity domain 1 (LCD1) of PARIS is required for LLPS, whereas the C-terminal prion-like domain (PrLD) drives the transition from liquid to solid phase. In addition, we observe that poly(ADP-ribose) (PAR) strongly binds to the C-terminus of PARIS near the PrLD, accelerating its LLPS and solidification. N-Methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced PAR formation leads to PARIS oligomerization in human iPSC-derived dopaminergic neurons that is prevented by the PARP inhibitor, ABT-888. Furthermore, SDS-resistant PARIS species are observed in the substantia nigra (SN) of aged mice overexpressing wild-type PARIS, but not with a PAR binding-deficient PARIS mutant. PARIS solidification is also found in the SN of mice injected with preformed fibrils of α-synuclein (α-syn PFF) and adult mice with a conditional knockout (KO) of parkin, but not if α-syn PFF is injected into mice deficient for PARP1. Herein, we demonstrate that PARIS undergoes LLPS and PAR-mediated solidification in models of Parkinson's disease.


Assuntos
Doença de Parkinson , Poli Adenosina Difosfato Ribose , Animais , Humanos , Camundongos , Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
2.
Adv Mater ; 35(46): e2302666, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37548180

RESUMO

Atomically dispersed and nitrogen coordinated iron catalysts (Fe-NCs) demonstrate potential as alternatives to platinum-group metal (PGM) catalysts in oxygen reduction reaction (ORR). However, in the context of practical proton exchange membrane fuel cell (PEMFC) applications, the membrane electrode assembly (MEA) performances of Fe-NCs remain unsatisfactory. Herein, improved MEA performance is achieved by tuning the local environment of the Fe-NC catalysts through defect engineering. Zeolitic imidazolate framework (ZIF)-derived nitrogen-doped carbon with additional CO2 activation is employed to construct atomically dispersed iron sites with a controlled defect number. The Fe-NC species with the optimal number of defect sites exhibit excellent ORR performance with a high half-wave potential of 0.83 V in 0.5 M H2 SO4 . Variation in the number of defects allows for fine-tuning of the reaction intermediate binding energies by changing the contribution of the Fe d-orbitals, thereby optimizing the ORR activity. The MEA based on a defect-engineered Fe-NC catalyst is found to exhibit a remarkable peak power density of 1.1 W cm-2 in an H2 /O2 fuel cell, and 0.67 W cm-2  in an H2 /air fuel cell, rendering it one of the most active atomically dispersed catalyst materials at the MEA level.

3.
Sci Transl Med ; 15(711): eabh3489, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37647389

RESUMO

Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a master regulator of mitochondrial biogenesis. Reduced PGC-1α abundance is linked to skeletal muscle weakness in aging or pathological conditions, such as neurodegenerative diseases and diabetes; thus, elevating PGC-1α abundance might be a promising strategy to treat muscle aging. Here, we performed high-throughput screening and identified a natural compound, farnesol, as a potent inducer of PGC-1α. Farnesol administration enhanced oxidative muscle capacity and muscle strength, leading to metabolic rejuvenation in aged mice. Moreover, farnesol treatment accelerated the recovery of muscle injury associated with enhanced muscle stem cell function. The protein expression of Parkin-interacting substrate (PARIS/Zfp746), a transcriptional repressor of PGC-1α, was elevated in aged muscles, likely contributing to PGC-1α reduction. The beneficial effect of farnesol on aged muscle was mediated through enhanced PARIS farnesylation, thereby relieving PARIS-mediated PGC-1α suppression. Furthermore, short-term exercise increased PARIS farnesylation in the muscles of young and aged mice, whereas long-term exercise decreased PARIS expression in the muscles of aged mice, leading to the elevation of PGC-1α. Collectively, the current study demonstrated that the PARIS-PGC-1α pathway is linked to muscle aging and that farnesol treatment can restore muscle functionality in aged mice through increased farnesylation of PARIS.


Assuntos
Farneseno Álcool , Debilidade Muscular , Animais , Camundongos , Farneseno Álcool/farmacologia , Envelhecimento , Prenilação , Ubiquitina-Proteína Ligases
4.
Sci Rep ; 11(1): 22745, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34815492

RESUMO

Although Krüppel-associated box domain-containing zinc-finger proteins (K-ZNFs) may be associated with sophisticated gene regulation in higher organisms, the physiological functions of most K-ZNFs remain unknown. The Zfp212 protein was highly conserved in mammals and abundant in the brain; it was mainly expressed in the cerebellum (Cb). Zfp212 (mouse homolog of human ZNF212) knockout (Zfp212-KO) mice showed a reduction in survival rate compared to wild-type mice after 20 months of age. GABAergic Purkinje cell degeneration in the Cb and aberrant locomotion were observed in adult Zfp212-KO mice. To identify genes related to the ataxia-like phenotype of Zfp212-KO mice, 39 ataxia-associated genes in the Cb were monitored. Substantial alterations in the expression of ataxin 10, protein phosphatase 2 regulatory subunit beta, protein kinase C gamma, and phospholipase D3 (Pld3) were observed. Among them, Pld3 alone was tightly regulated by Flag-tagged ZNF212 overexpression or Zfp212 knockdown in the HT22 cell line. The Cyclic Amplification and Selection of Targets assay identified the TATTTC sequence as a recognition motif of ZNF212, and these motifs occurred in both human and mouse PLD3 gene promoters. Adeno-associated virus-mediated introduction of human ZNF212 into the Cb of 3-week-old Zfp212-KO mice prevented Purkinje cell death and motor behavioral deficits. We confirmed the reduction of Zfp212 and Pld3 in the Cb of an alcohol-induced cerebellar degeneration mouse model, suggesting that the ZNF212-PLD3 relationship is important for Purkinje cell survival.


Assuntos
Ataxia/patologia , Proteínas de Ligação a DNA/metabolismo , Transtornos Neurológicos da Marcha/patologia , Proteínas do Tecido Nervoso/fisiologia , Fosfolipase D/antagonistas & inibidores , Células de Purkinje/patologia , Animais , Ataxia/etiologia , Proteínas de Ligação a DNA/administração & dosagem , Proteínas de Ligação a DNA/genética , Transtornos Neurológicos da Marcha/etiologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/administração & dosagem , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células de Purkinje/metabolismo
5.
Sci Transl Med ; 13(604)2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321320

RESUMO

Accumulation of the parkin-interacting substrate (PARIS; ZNF746), due to inactivation of parkin, contributes to Parkinson's disease (PD) through repression of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α; PPARGC1A) activity. Here, we identify farnesol as an inhibitor of PARIS. Farnesol promoted the farnesylation of PARIS, preventing its repression of PGC-1α via decreasing PARIS occupancy on the PPARGC1A promoter. Farnesol prevented dopaminergic neuronal loss and behavioral deficits via farnesylation of PARIS in PARIS transgenic mice, ventral midbrain transduction of AAV-PARIS, adult conditional parkin KO mice, and the α-synuclein preformed fibril model of sporadic PD. PARIS farnesylation is decreased in the substantia nigra of patients with PD, suggesting that reduced farnesylation of PARIS may play a role in PD. Thus, farnesol may be beneficial in the treatment of PD by enhancing the farnesylation of PARIS and restoring PGC-1α activity.


Assuntos
Doença de Parkinson , Animais , Dopamina , Camundongos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Prenilação , Proteínas Repressoras/metabolismo , Substância Negra/metabolismo
6.
Sci Rep ; 10(1): 6471, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32277080

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Sci Signal ; 13(663)2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33443209

RESUMO

Progressive degeneration of dopaminergic neurons characterizes Parkinson's disease (PD). This neuronal loss occurs through diverse mechanisms, including a form of programmed cell death dependent on poly(ADP-ribose) polymerase-1 (PARP1) called parthanatos. Deficient activity of the kinase Akt1 and aggregation of the protein α-synuclein are also implicated in disease pathogenesis. Here, we found that Akt1 suppressed parthanatos in dopaminergic neurons through a transcriptional mechanism. Overexpressing constitutively active Akt1 in SH-SY5Y cells or culturing cells with chlorogenic acid (a polyphenol found in coffee that activates Akt1) stimulated the CREB-dependent transcriptional activation of the gene encoding the E3 ubiquitin ligase RNF146. RNF146 inhibited PARP1 not through its E3 ligase function but rather by binding to and sequestering PAR, which enhanced the survival of cultured cells exposed to the dopaminergic neuronal toxin 6-OHDA or α-synuclein aggregation. In mice, intraperitoneal administration of chlorogenic acid activated the Akt1-CREB-RNF146 pathway in the brain and provided neuroprotection against both 6-OHDA and combinatorial α-synucleinopathy in an RNF146-dependent manner. Furthermore, dysregulation of the Akt1-CREB pathway was observed in postmortem brain samples from patients with PD. The findings suggest that therapeutic restoration of RNF146 expression, such as by activating the Akt1-CREB pathway, might halt neurodegeneration in PD.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Neurônios/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Morte Celular/genética , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Humanos , Neurônios/patologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Poli(ADP-Ribose) Polimerase-1/genética , Proteínas Proto-Oncogênicas c-akt/genética , Ubiquitina-Proteína Ligases/genética
8.
Am J Respir Cell Mol Biol ; 62(2): 168-177, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31409093

RESUMO

Disruption of alveolar-capillary barriers is a major complication of high-volume mechanical ventilation referred to as "ventilator-induced lung injury." The stretching force in alveoli is transmitted to endothelial cells, increasing the tension on underlying endothelial plasma membrane. The mechanosensor Piezo1, a plasma membrane cation channel, was inducibly deleted in endothelial cells of mice (Piezo1iEC-/-), which allowed us to study its role in regulating the endothelial barrier response to alveolar stretch. We observed significant increase in lung vascular permeability in Piezo1iEC-/- mice as compared with control Piezo1fl/fl mice in response to high-volume mechanical ventilation. We also observed that human lung endothelial monolayers depleted of Piezo1 and exposed to cyclic stretch had increased permeability. We identified the calcium-dependent cysteine protease calpain as a downstream target of Piezo1. Furthermore, we showed that calpain maintained stability of the endothelial barrier in response to mechanical stretch by cleaving Src kinase, which was responsible for disassembling endothelial adherens junctions. Pharmacological activation of calpain caused Src cleavage and thereby its inactivation, and it restored the disrupted lung endothelial barrier seen in Piezo1iEC-/- mice undergoing high-volume mechanical ventilation. Our data demonstrate that downregulation of Piezo1 signaling in endothelium is a critical factor in the pathogenesis of ventilator-induced lung injury, and thus augmenting Piezo1 expression or pharmacologically activating Piezo1 signaling may be an effective therapeutic strategy.


Assuntos
Junções Aderentes/metabolismo , Células Endoteliais/metabolismo , Canais Iônicos/metabolismo , Pulmão/metabolismo , Animais , Permeabilidade Capilar/efeitos dos fármacos , Membrana Celular/metabolismo , Endotélio Vascular/metabolismo , Camundongos , Alvéolos Pulmonares/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo
9.
J Cell Biol ; 219(2)2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31865373

RESUMO

Podosomes are compartmentalized actin-rich adhesions, defined by their ability to locally secrete proteases and remodel extracellular matrix. Matrix remodeling by endothelial podosomes facilitates invasion and thereby vessel formation. However, the mechanisms underlying endothelial podosome formation and function remain unclear. Here, we demonstrate that Septin2, Septin6, and Septin7 are required for maturation of nascent endothelial podosomes into matrix-degrading organelles. We show that podosome development occurs through initial mobilization of the scaffolding protein Tks5 and F-actin accumulation, followed by later recruitment of Septin2. Septin2 localizes around the perimeter of podosomes in close proximity to the basolateral plasma membrane, and phosphoinositide-binding residues of Septin2 are required for podosome function. Combined, our results suggest that the septin cytoskeleton forms a diffusive barrier around nascent podosomes to promote their maturation. Finally, we show that Septin2-mediated regulation of podosomes is critical for endothelial cell invasion associated with angiogenesis. Therefore, targeting of Septin2-mediated podosome formation is a potentially attractive anti-angiogenesis strategy.


Assuntos
Proteínas de Ciclo Celular/genética , Neovascularização Fisiológica/genética , Septinas/genética , Citoesqueleto de Actina/genética , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Movimento Celular/genética , Células Cultivadas , Células Endoteliais/metabolismo , Matriz Extracelular/genética , Humanos , Morfogênese/genética , Podossomos/genética
10.
Am J Physiol Cell Physiol ; 316(1): C92-C103, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30427721

RESUMO

Angiogenesis is initiated in response to a variety of external cues, including mechanical and biochemical stimuli; however, the underlying signaling mechanisms remain unclear. Here, we investigated the proangiogenic role of the endothelial mechanosensor Piezo1. Genetic deletion and pharmacological inhibition of Piezo1 reduced endothelial sprouting and lumen formation induced by wall shear stress and proangiogenic mediator sphingosine 1-phosphate, whereas Piezo1 activation by selective Piezo1 activator Yoda1 enhanced sprouting angiogenesis. Similarly to wall shear stress, sphingosine 1-phosphate functioned by activating the Ca2+ gating function of Piezo1, which in turn signaled the activation of the matrix metalloproteinase-2 and membrane type 1 matrix metalloproteinase during sprouting angiogenesis. Studies in mice in which Piezo1 was conditionally deleted in endothelial cells demonstrated the requisite role of sphingosine 1-phosphate-dependent activation of Piezo1 in mediating angiogenesis in vivo. These results taken together suggest that both mechanical and biochemical stimuli trigger Piezo1-mediated Ca2+ influx and thereby activate matrix metalloproteinase-2 and membrane type 1 matrix metalloproteinase and synergistically facilitate sprouting angiogenesis.


Assuntos
Canais Iônicos/deficiência , Metaloproteinase 14 da Matriz/metabolismo , Neovascularização Fisiológica/fisiologia , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Canais Iônicos/genética , Metaloproteinase 14 da Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
11.
Nanotechnology ; 30(6): 065201, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30524104

RESUMO

We report on an electronic structure change of single-walled carbon nanotube (SWNT) on hexagonal boron nitride due to electron doping via high-pressure H2 exposure. The fractional coverage of hydrogenated carbon atom is estimated to be at least θ = 0.163 from the in situ I ds-V g measurements of the release process. Raman spectroscopy and x-ray photoelectron spectroscopy were carried out to support the in situ electrical measurements. In particular, we used the dissociative Langmuir-type model to yield the desorption coefficient k des by fitting it to the in situ electrical data. Finally, we applied this hydrogenation method to the SWNT network on the commercial Si/SiO2 substrate to open the possibility of the scalable n-type semiconducting SWNT FETs.

12.
Sci Rep ; 8(1): 4948, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29563568

RESUMO

Using magneto transport, we probe hopping length scales in the variable range hopping conduction of carbonized polyacetylene and polyaniline nanofibers. In contrast to pristine polyacetylene nanofibers that show vanishing magneto conductance at large electric fields, carbonized polymer nanofibers display a negative magneto conductance that decreases in magnitude but remains finite with respect to the electric field. We show that this behavior of magneto conductance is an indicator of the electric field and temperature dependence of hopping length in the gradual transition from the thermally activated to the activation-less electric field driven variable range hopping transport. This reveals magneto transport as a useful tool to probe hopping lengths in the non-linear hopping regime.

13.
Biochem Biophys Res Commun ; 495(4): 2498-2504, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29287724

RESUMO

Our previous study found that PARIS (ZNF746) transcriptionally suppressed transketolase (TKT), a key enzyme in pentose phosphate pathway (PPP) in the substantia nigra (SN) of AAV-PARIS injected mice. In this study, we revealed that PARIS overexpression reprogrammed glucose metabolic pathway, leading to the increment of glycolytic proteins along with TKT reduction in the SN of AAV-PARIS injected mice. Knock-down of TKT in differentiated SH-SY5Y cells led to an increase of glycolytic enzymes and decrease of PPP-related enzymes whereas overexpression of TKT restored PARIS-mediated glucose metabolic shift, suggesting that glucose metabolic alteration by PARIS is TKT-dependent. Inhibition of PPP by either PARIS overexpression or TKT knock-down elevated the level of H2O2, and diminished NADPH and GSH levels, ultimately triggering the induction of HIF-1α, a master activator of glycolysis. In addition, TKT inhibition by stereotaxic injection of oxythiamine demonstrated slight decrement of dopaminergic neurons (DNs) in SN but not cortical neurons in the cortex, suggesting that TKT might be a survival factor of DNs. In differentiated SH-SY5Y, cell toxicity by GFP-PARIS was partially restored by introduction of Flag-TKT and siRNA-HIF-1α. We also observed the increase of HIF-1α and glycolytic hexokinase 2 in the SN of Parkinson's disease patients. Taken together, these results suggest that PARIS accumulation might distort the balance of glucose metabolism, providing clues for understanding mechanism underlying selective DNs death by PARIS.


Assuntos
Encéfalo/metabolismo , Neurônios Dopaminérgicos/metabolismo , Glucose/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Doença de Parkinson/metabolismo , Proteínas Repressoras/metabolismo , Transcetolase/metabolismo , Animais , Apoptose , Encéfalo/patologia , Linhagem Celular , Neurônios Dopaminérgicos/patologia , Glicólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doença de Parkinson/patologia
14.
Biochem Biophys Res Commun ; 493(2): 1050-1056, 2017 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-28939041

RESUMO

Recently, PARIS (ZNF746) is introduced as authentic substrate of parkin and transcriptionally represses PGC-1α by binding to insulin responsive sequences (IRSs) in the promoter of PGC-1α. The overexpression of PARIS selectively leads to the loss of dopaminergic neurons (DN) and mitochondrial abnormalities in the substantia nigra (SN) of Parkinson's disease (PD) models. To identify PARIS target molecules altered in SN region-specific manner, LC-MS/MS-based quantitative proteomic analysis is employed to investigate proteomic alteration in the cortex, striatum, and SN of AAV-PARIS injected mice. Herein, we find that the protein and mRNA of transketolase (TKT), a key enzyme in pentose phosphate pathway (PPP) of glucose metabolism, is exclusively decreased in the SN of AAV-PARIS mice. PARIS overexpression suppresses TKT transcription via IRS-like motif in the TKT promoter. Moreover, the reduction of TKT by PARIS is found in primary DN but not in cortical neurons, suggesting that PARIS-medicated TKT suppression is cell type-dependent. Interestingly, we observe the reduced level of TKT in the SN of PD patients but not in the cortex. These findings indicate that TKT might be a SN-specific target of PARIS, providing new clues to understand the mechanism underlying selective DNs death in PD.


Assuntos
Proteínas Repressoras/metabolismo , Substância Negra/metabolismo , Transcetolase/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Regulação da Expressão Gênica , Glicólise , Humanos , Camundongos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Via de Pentose Fosfato , Proteômica , Ratos , Proteínas Repressoras/análise , Proteínas Repressoras/genética , Substância Negra/patologia , Transcetolase/análise , Transcetolase/genética
15.
Oncotarget ; 8(30): 48603-48618, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28611284

RESUMO

Progressive dopaminergic neurodegeneration is responsible for the canonical motor deficits in Parkinson's disease (PD). The widely prescribed anti-diabetic medicine metformin is effective in preventing neurodegeneration in animal models; however, despite the significant potential of metformin for treating PD, the therapeutic effects and molecular mechanisms underlying dopaminergic neuroprotection by metformin are largely unknown.In this study, we found that metformin induced substantial proteomic changes, especially in metabolic and mitochondrial pathways in the substantia nigra (SN). Consistent with this data, metformin increased mitochondrial marker proteins in SH-SY5Y neuroblastoma cells. Mitochondrial protein expression by metformin was found to be brain region specific, with metformin increasing mitochondrial proteins in the SN and the striatum, but not the cortex. As a potential upstream regulator of mitochondria gene transcription by metformin, PGC-1α promoter activity was stimulated by metformin via CREB and ATF2 pathways. PGC-1α and phosphorylation of ATF2 and CREB by metformin were selectively increased in the SN and the striatum, but not the cortex. Finally, we showed that metformin protected dopaminergic neurons and improved dopamine-sensitive motor performance in an MPTP-induced PD animal model. Together these results suggest that the metformin-ATF2/CREB-PGC-1α pathway might be promising therapeutic target for PD.


Assuntos
Fator 2 Ativador da Transcrição/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Metformina/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Mitocôndrias/metabolismo , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/metabolismo , Proteômica/métodos , Substância Negra/metabolismo
16.
Sci Rep ; 7(1): 525, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28366931

RESUMO

Dysfunctional parkin due to mutations or post-translational modifications contributes to dopaminergic neurodegeneration in Parkinson's disease (PD). Overexpression of parkin provides protection against cellular stresses and prevents dopamine cell loss in several PD animal models. Here we performed an unbiased high-throughput luciferase screening to identify chemicals that can increase parkin expression. Among promising parkin inducers, hydrocortisone possessed the most favorable profiles including parkin induction ability, cell protection ability, and physicochemical property of absorption, distribution, metabolism, and excretion (ADME) without inducing endoplasmic reticulum stress. We found that hydrocortisone-induced parkin expression was accountable for cell protection against oxidative stress. Hydrocortisone-activated parkin expression was mediated by CREB pathway since gRNA to CREB abolished hydrocortisone's ability to induce parkin. Finally, hydrocortisone treatment in mice increased brain parkin levels and prevented 6-hydroxy dopamine induced dopamine cell loss when assessed at 4 days after the toxin's injection. Our results showed that hydrocortisone could stimulate parkin expression via CREB pathway and the induced parkin expression was accountable for its neuroprotective effect. Since glucocorticoid is a physiological hormone, maintaining optimal levels of glucocorticoid might be a potential therapeutic or preventive strategy for Parkinson's disease.


Assuntos
Morte Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Neurônios Dopaminérgicos/metabolismo , Hidrocortisona/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Linhagem Celular , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Descoberta de Drogas , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Ensaios de Triagem em Larga Escala , Humanos , Hidrocortisona/farmacologia , Imuno-Histoquímica , Camundongos , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ubiquitina-Proteína Ligases/genética
17.
Cell Rep ; 18(4): 918-932, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28122242

RESUMO

Mutations in PTEN-induced putative kinase 1 (PINK1) and parkin cause autosomal-recessive Parkinson's disease through a common pathway involving mitochondrial quality control. Parkin inactivation leads to accumulation of the parkin interacting substrate (PARIS, ZNF746) that plays an important role in dopamine cell loss through repression of proliferator-activated receptor gamma coactivator-1-alpha (PGC-1α) promoter activity. Here, we show that PARIS links PINK1 and parkin in a common pathway that regulates dopaminergic neuron survival. PINK1 interacts with and phosphorylates serines 322 and 613 of PARIS to control its ubiquitination and clearance by parkin. PINK1 phosphorylation of PARIS alleviates PARIS toxicity, as well as repression of PGC-1α promoter activity. Conditional knockdown of PINK1 in adult mouse brains leads to a progressive loss of dopaminergic neurons in the substantia nigra that is dependent on PARIS. Altogether, these results uncover a function of PINK1 to direct parkin-PARIS-regulated PGC-1α expression and dopaminergic neuronal survival.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Proteínas Quinases/metabolismo , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Neurônios Dopaminérgicos/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Proteínas Quinases/química , Proteínas Quinases/genética , Proteólise , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ubiquitina/metabolismo , Ubiquitinação
18.
Am J Pathol ; 187(1): 214-224, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27863212

RESUMO

Vascular endothelial growth factor receptor 2 (VEGFR2) localized on the surface of endothelial cells (ECs) is a key determinant of the magnitude and duration of angiogenesis induced by vascular endothelial growth factor (VEGF). The kinesin family plus-end motor KIF13B transports VEGFR2 to the EC surface, and as such, specific inhibition of polarized VEGFR2 trafficking prevents angiogenesis. We designed a series of bioactive peptides based on deep analysis of VEGFR2-binding domain of KIF13B that compete specifically with VEGFR2 binding of KIF13B and thereby potently inhibit angiogenesis. Expression of these peptides by lentivirus prevents VEGF-induced capillary network formation in Matrigel plugs and neovascularization in vivo. A synthetic soluble, cell-permeable, 23-amino acid peptide termed kinesin-derived angiogenesis inhibitor (KAI) not only prevents interaction of VEGFR2 with KIF13B but also trafficking of VEGFR2 in the plus-end direction to the EC plasmalemma. Kinesin-derived angiogenesis inhibitor also inhibits VEGF-induced EC migration and tumor growth in human lung carcinoma xenografted in immunodeficient mice. Thus, we describe a novel class of peptides derived from the site of interaction of KIF13B with VEGFR2 that inhibit VEGFR2 trafficking and thereby starve cancer of blood supply.


Assuntos
Inibidores da Angiogênese/farmacologia , Células Endoteliais/metabolismo , Cinesinas/química , Proteínas Motores Moleculares/química , Peptídeos/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Cinesinas/metabolismo , Camundongos Endogâmicos C57BL , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Domínios Proteicos , Transporte Proteico
19.
2d Mater ; 4(2)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29707213

RESUMO

Large-area growth of monolayer films of the transition metal dichalcogenides is of the utmost importance in this rapidly advancing research area. The mechanical exfoliation method offers high quality monolayer material but it is a problematic approach when applied to materials that are not air stable. One important example is 1T'-WTe2, which in multilayer form is reported to possess a large non saturating magnetoresistance, pressure induced superconductivity, and a weak antilocalization effect, but electrical data for the monolayer is yet to be reported due to its rapid degradation in air. Here we report a reliable and reproducible large-area growth process for obtaining many monolayer 1T'-WTe2 flakes. We confirmed the composition and structure of monolayer 1T'-WTe2 flakes using x-ray photoelectron spectroscopy, energy-dispersive x-ray spectroscopy, atomic force microscopy, Raman spectroscopy and aberration corrected transmission electron microscopy. We studied the time dependent degradation of monolayer 1T'-WTe2 under ambient conditions, and we used first-principles calculations to identify reaction with oxygen as the degradation mechanism. Finally we investigated the electrical properties of monolayer 1T'-WTe2 and found metallic conduction at low temperature along with a weak antilocalization effect that is evidence for strong spin-orbit coupling.

20.
Sci Rep ; 6: 37783, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27886233

RESUMO

We induce dramatic changes in the structure of conducting polymer nanofibers by carbonization at 800 °C and compare charge transport properties between carbonized and pristine nanofibers. Despite the profound structural differences, both types of systems display power law dependence of current with voltage and temperature, and all measurements can be scaled into a single universal curve. We analyze our experimental data in the framework of variable range hopping and argue that this mechanism can explain transport properties of pristine polymer nanofibers as well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...