Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 449(2): 202-7, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24813990

RESUMO

Flo8 is a transcriptional activator essential for the inducible expression of a set of target genes such as STA1, FLO11, and FLO1 encoding an extracellular glucoamylase and two cell surface proteins, respectively. However, the molecular mechanism of Flo8-mediated transcriptional activation remains largely elusive. By generating serial deletion constructs, we revealed here that a novel transcriptional activation domain on its extreme C-terminal region plays a crucial role in activating transcription. On the other hand, the N-terminal LisH motif of Flo8 appears to be required for its physical interaction with another transcriptional activator, Mss11, for their cooperative transcriptional regulation of the shared targets. Additionally, GST pull-down experiments uncovered that Flo8 and Mss11 can directly form either a heterodimer or a homodimer capable of binding to DNA, and we also showed that this formed complex of two activators interacts functionally and physically with the Swi/Snf complex. Collectively, our findings provide valuable clues for understanding the molecular mechanism of Flo8-mediated transcriptional control of multiple targets.


Assuntos
Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/química , Transativadores/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Lectinas de Ligação a Manose/genética , Glicoproteínas de Membrana/genética , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transativadores/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional
2.
Biochem Biophys Res Commun ; 439(4): 501-5, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24025681

RESUMO

Nrg1 is a zinc finger protein involved in the glucose repression of several glucose-repressed genes such as STA1, SUC2, and GAL1. Although the molecular details of the Nrg1-mediated repression of STA1 have been partly characterized, it still remains largely unknown how Nrg1 regulates these multiple target genes. In this study, we show that Nrg1 mediates the glucose repression of SUC2 and HXT2 through its direct binding to the specific promoter regions; it binds to the -404 to -360 region of the SUC2 promoter and the -957 to -810 region of the HXT2 promoter. Nrg1 also interacts with the -380 to -250 region of the PCK1 promoter, suggesting that it might also contribute to the PCK1 repression. In addition, ChIP assays confirmed that Nrg1 associated with specific promoter regions of these glucose-repressed genes in vivo. Analysis of the DNA fragments to which it binds indicates that Nrg1 may recognize T/ACCCC sequence within the promoters of these glucose-repressed genes as well as in its own promoter. Collectively, our findings indicate that Nrg1 mediates the glucose repression of multiple genes through its direct binding to the specific promoter regions.


Assuntos
Glucose/metabolismo , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica , Sítios de Ligação , Galactoquinase/genética , Galactoquinase/metabolismo , Genes Fúngicos , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo
3.
Nat Biotechnol ; 23(1): 63-8, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15592456

RESUMO

We report the complete genome sequence of Zymomonas mobilis ZM4 (ATCC31821), an ethanologenic microorganism of interest for the production of fuel ethanol. The genome consists of 2,056,416 base pairs forming a circular chromosome with 1,998 open reading frames (ORFs) and three ribosomal RNA transcription units. The genome lacks recognizable genes for 6-phosphofructokinase, an essential enzyme in the Embden-Meyerhof-Parnas pathway, and for two enzymes in the tricarboxylic acid cycle, the 2-oxoglutarate dehydrogenase complex and malate dehydrogenase, so glucose can be metabolized only by the Entner-Doudoroff pathway. Whole genome microarrays were used for genomic comparisons with the Z. mobilis type strain ZM1 (ATCC10988) revealing that 54 ORFs predicted to encode for transport and secretory proteins, transcriptional regulators and oxidoreductase in the ZM4 strain were absent from ZM1. Most of these ORFs were also found to be actively transcribed in association with ethanol production by ZM4.


Assuntos
Genoma Bacteriano , Zymomonas/genética , Transporte Biológico , DNA/química , Etanol/química , Etanol/metabolismo , Genoma , Complexo Cetoglutarato Desidrogenase/metabolismo , Malato Desidrogenase/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , Fases de Leitura Aberta , Estresse Oxidativo , Plasmídeos/metabolismo , RNA/química , Análise de Sequência de DNA , Transcrição Gênica , Ácidos Tricarboxílicos/metabolismo
4.
Mol Cell Biol ; 24(21): 9542-56, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15485921

RESUMO

In the yeast Saccharomyces diastaticus, expression of the STA1 gene, which encodes an extracellular glucoamylase, is activated by the specific DNA-binding activators Flo8, Mss11, Ste12, and Tec1 and the Swi/Snf chromatin-remodeling complex. Here we show that Flo8 interacts physically and functionally with Mss11. Flo8 and Mss11 bind cooperatively to the inverted repeat sequence TTTGC-n-GCAAA (n = 97) in UAS1-2 of the STA1 promoter. In addition, Flo8 and Mss11 bind indirectly to UAS2-1 of the STA1 promoter by interacting with Ste12 and Tec1, which bind to the filamentation and invasion response element (FRE) in UAS2-1. Furthermore, our findings indicate that the Ste12, Tec1, Flo8, and Mss11 activators and the Swi/Snf complex bind sequentially to the STA1 promoter, as follows: Ste12 and Tec1 bind first to the FRE, whereby they recruit the Swi/Snf complex to the STA1 promoter. Next, the Swi/Snf complex enhances Flo8 and Mss11 binding to UAS1-2. In the final step, Flo8 and Mss11 directly promote association of RNA polymerase II with the STA1 promoter to activate STA1 expression. In the absence of glucose, the levels of Flo8 and Tec1 are greatly increased, whereas the abundances of two repressors, Nrg1 and Sfl1, are reduced, suggesting that the balance of transcriptional regulators may be important for determining activation or repression of STA1 expression.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , DNA Fúngico/genética , DNA Fúngico/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Sistema de Sinalização das MAP Quinases , Complexos Multiproteicos , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos
5.
Mol Cell Biol ; 24(17): 7695-706, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15314176

RESUMO

In the yeast Saccharomyces diastaticus, expression of the STA1 gene, which encodes an extracellular glucoamylase, is negatively regulated by glucose. Here we demonstrate that glucose-dependent repression of STA1 expression is imposed by both Sfl1 and Nrg1, which serve as direct transcriptional repressors. We show that Nrg1 acts only on UAS1, and Sfl1 acts only on UAS2, in the STA1 promoter. When bound to its specific site, Sfl1 (but not Nrg1) prevents the binding to UAS2 of two transcriptional activators, Ste12 and Tec1, required for STA1 expression. We also found that Sfl1 contributes to STA1 repression by binding to the promoter and inhibiting the expression of FLO8, a gene that encodes a third transcriptional activator involved in STA1 expression. In addition, we show that the levels of Nrg1 and Sfl1 increase in glucose-grown cells, suggesting that the effects of glucose are mediated, at least in part, through an increase in the abundance of these repressors. NRG1 and SFL1 expression requires the Srb8-11 complex, and correspondingly, the Srb8-11 complex is also necessary for STA1 repression. However, our evidence indicates that the Srb8-11 complex does not associate with either the SFL1 or the NRG1 promoter and thus plays an indirect role in activating NRG1 and SFL1 expression.


Assuntos
Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Glucana 1,4-alfa-Glucosidase/metabolismo , Glucose/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/genética , Glucana 1,4-alfa-Glucosidase/genética , Substâncias Macromoleculares , Ligação Proteica , Proteínas Repressoras/genética , Saccharomyces/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
6.
J Biol Chem ; 279(32): 33253-62, 2004 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-15159386

RESUMO

The pga gene of Escherichia coli W ATCC11105 encodes a penicillin G acylase whose expression is regulated at both the transcriptional and post-transcriptional level. In this work we have shown that PaaX is the repressor of pga expression, and we have identified its binding consensus as TGATTC(N27)GAATCA. We conclude that the process of "PAA induction" actually involves relief of pga from repression by PaaX. Other features of the pga promoter have also been characterized. (i) It has a native class III cAMP-receptor protein (CRP)-dependent promoter with two CRP-binding sites. (ii) The downstream CRP-binding site II has higher affinity. (iii) Binding of cAMP-CRP to both sites (I + II) is required for maximal expression. We have also shown that the PaaX-binding site overlaps with the CRP-binding site I. This implies that PaaX and the cAMP-CRP compete for binding to the region around the CRP-binding site I and therefore have antagonistic effects on pga expression.


Assuntos
AMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Regulação Enzimológica da Expressão Gênica , Penicilina Amidase/genética , Receptores de Superfície Celular/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Bases , Sítios de Ligação , Ligação Competitiva , Sequência Consenso , Proteína Receptora de AMP Cíclico , DNA/química , DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli/genética , Mutagênese Sítio-Dirigida , Fenilacetatos/metabolismo , Fenilacetatos/farmacologia , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas/genética , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transformação Bacteriana
7.
Curr Genet ; 44(5): 261-7, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14523573

RESUMO

The expression of STA genes that encode extracellular glucoamylase isozymes is repressed in most laboratory Saccharomyces cerevisiae strains, which are believed to contain an undefined repressor, designated STA10. To identify the regulator involved in STA10 repression, we investigate the FLO8, MSN1, MSS11, STE12, and TEC1 genes. The Deltaflo8 or Deltamss11 deletion mutants in the sta10 genetic background exhibit both a loss of flocculation ability and a reduction in extracellular glucoamylase activity, as in the STA10 strain. Moreover, the STA10 repression is suppressed completely or partially by the introduction of a single copy of the FLO8 or MSS11 genes. Sequence analysis and complementation testing of the STA10 strain reveal that it has an inactive, mutated flo8-1 allele. A random spore analysis and transplacement (allele replacement) experiment confirms that the repressive phenotype of STA10 is due to the amber mutation of the transcriptional activator, FLO8.


Assuntos
Regulação Fúngica da Expressão Gênica , Glucana 1,4-alfa-Glucosidase/genética , Proteínas Nucleares/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Transativadores/fisiologia , Alelos , Regulação Enzimológica da Expressão Gênica , Glucana 1,4-alfa-Glucosidase/biossíntese , Mutação , Proteínas Nucleares/genética , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Supressão Genética , Transativadores/genética , Fatores de Transcrição
8.
Mol Cell Biol ; 22(24): 8409-14, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12446761

RESUMO

ASC-2, a recently isolated transcriptional coactivator molecule, stimulates transactivation by multiple transcription factors, including nuclear receptors. We generated a potent dominant negative fragment of ASC-2, encompassing the N-terminal LXXLL motif that binds a broad range of nuclear receptors. This fragment, termed DN1, specifically inhibited endogenous ASC-2 from binding these receptors in vivo, whereas DN1/m, in which the LXXLL motif was mutated to LXXAA to abolish the receptor interactions, was inert. Interestingly, DN1 transgenic mice but not DN1/m transgenic mice exhibited severe microphthalmia and posterior lenticonus with cataract as well as a variety of pathophysiological phenotypes in many other organs. Our results provide a novel insight into the molecular and histopathological mechanism of posterior lenticonus with cataract and attest to the importance of ASC-2 as a pivotal transcriptional coactivator of nuclear receptors in vivo.


Assuntos
Anormalidades Congênitas , Peptídeos e Proteínas de Sinalização Intracelular , Doenças do Cristalino/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Animais , Células Cultivadas , Modelos Animais de Doenças , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/patologia , Embrião de Mamíferos/fisiologia , Olho/patologia , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Genes Letais , Genes Reporter , Humanos , Doenças do Cristalino/genética , Camundongos , Camundongos Transgênicos , Coativadores de Receptor Nuclear , Fragmentos de Peptídeos/genética , Fenótipo , Gravidez , Receptores do Ácido Retinoico/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...