Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(30): e2300881120, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459536

RESUMO

Since the beginning of the satellite era, Southern Ocean sea surface temperatures (SSTs) have cooled, despite global warming. While observed Southern Ocean cooling has previously been reported to have minimal impact on the tropical Pacific, the efficiency of this teleconnection has recently shown to be mediated by subtropical cloud feedbacks that are highly model-dependent. Here, we conduct a coupled model intercomparison of paired ensemble simulations under historical radiative forcing: one with freely evolving SSTs and the other with Southern Ocean SST anomalies constrained to follow observations. We reveal a global impact of observed Southern Ocean cooling in the model with stronger (and more realistic) cloud feedbacks, including Antarctic sea-ice expansion, southeastern tropical Pacific cooling, northward-shifted Hadley circulation, Aleutian low weakening, and North Pacific warming. Our results therefore suggest that observed Southern Ocean SST decrease might have contributed to cooler conditions in the eastern tropical Pacific in recent decades.

2.
Eur J Pharmacol ; 838: 69-77, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30194938

RESUMO

Migraine is characterized by recurrent and disabling headaches; therefore, several drugs have been widely prescribed to prevent acute migraine attacks. Amitriptyline, a tricyclic antidepressant, is among the most commonly administered. It is poorly known, however, whether amitriptyline modulates the excitability of dural afferent neurons that transmit pain signals from the dura mater. In this study, the effects of amitriptyline on tetrodotoxin-resistant (TTX-R) Na+ channels were examined in acutely isolated rat dural afferent neurons, which were identified by the fluorescent dye DiI. The TTX-R Na+ currents (INa) were recorded from medium-sized DiI-positive neurons using a whole-cell patch clamp technique. Amitriptyline (3 µM) slightly reduced the peak component of transient INa and induced a marked decrease in the steady-state component of transient TTX-R INa, as well as in the slow ramp-induced TTX-R INa. Our findings suggest that amitriptyline specifically inhibits persistent Na+ currents mediated by TTX-R Na+ channels. While amitriptyline had minor effects on voltage-activation/inactivation, it increased the extent of the use-dependent inhibition of TTX-R Na+ channels. Amitriptyline also affected the inactivation kinetics of TTX-R Na+ channels by significantly accelerating the inactivation of TTX-R Na+ channels and slowing the subsequent recovery. Amitriptyline decreased the number of action potentials by increasing the threshold for their generation. In conclusion, the amitriptyline-mediated diverse modulation of TTX-R Na+ channels would be, at least in part, responsible for its prophylactic efficacy for migraine attacks.


Assuntos
Amitriptilina/farmacologia , Antidepressivos Tricíclicos/farmacologia , Transtornos de Enxaqueca/tratamento farmacológico , Nociceptores/efeitos dos fármacos , Canais de Sódio/efeitos dos fármacos , Amitriptilina/uso terapêutico , Animais , Antidepressivos Tricíclicos/uso terapêutico , Dura-Máter/citologia , Dura-Máter/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Transtornos de Enxaqueca/patologia , Nociceptores/metabolismo , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo , Tetrodotoxina/farmacologia
3.
Nat Commun ; 8: 15998, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28685765

RESUMO

Observational analysis suggests that the western tropical Pacific (WTP) sea surface temperature (SST) shows predominant variability over multidecadal time scales, which is unlikely to be explained by the Interdecadal Pacific Oscillation. Here we show that this variability is largely explained by the remote Atlantic multidecadal oscillation (AMO). A suite of Atlantic Pacemaker experiments successfully reproduces the WTP multidecadal variability and the AMO-WTP SST connection. The AMO warm SST anomaly generates an atmospheric teleconnection to the North Pacific, which weakens the Aleutian low and subtropical North Pacific westerlies. The wind changes induce a subtropical North Pacific SST warming through wind-evaporation-SST effect, and in response to this warming, the surface winds converge towards the subtropical North Pacific from the tropics, leading to anomalous cyclonic circulation and low pressure over the WTP region. The warm SST anomaly further develops due to the SST-sea level pressure-cloud-longwave radiation positive feedback. Our findings suggest that the Atlantic Ocean acts as a key pacemaker for the western Pacific decadal climate variability.

4.
Neuroreport ; 27(17): 1274-1280, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27755281

RESUMO

Cell bodies of trigeminal mesencephalic nucleus (Vmes) neurons are located within the central nervous system, and therefore, peripheral as well as central acidosis can modulate the excitability of Vmes neurons. Here, we report the effect of acidic pH on voltage-gated Na channels in acutely isolated rat Vmes neurons using a conventional whole-cell patch clamp technique. Acidic pH (pH 6.0) slightly but significantly shifted both the activation and steady-state fast inactivation relationships toward depolarized potentials. However, acidic pH (pH 6.0) had a minor effect on the inactivation kinetics of voltage-gated Na channels. Less sensitivity of voltage-gated Na channels to acidic pH may allow Vmes neurons to transduce the precise proprioceptive information even under acidic pH conditions.


Assuntos
Ácidos , Potenciais da Membrana/fisiologia , Neurônios/fisiologia , Canais de Sódio/fisiologia , Núcleo Motor do Nervo Trigêmeo/citologia , Animais , Animais Recém-Nascidos , Biofísica , Cloreto de Cádmio/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Células Cultivadas , Estimulação Elétrica , Concentração de Íons de Hidrogênio , Potenciais da Membrana/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo , Tetrodotoxina/farmacologia
5.
Nat Commun ; 6: 8895, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26608398

RESUMO

Prevailing theories on the equatorial Atlantic Niño are based on the dynamical interaction between atmosphere and ocean. However, dynamical coupled ocean-atmosphere models poorly simulate and predict equatorial Atlantic climate variability. Here we use multi-model numerical experiments to show that thermodynamic feedbacks excited by stochastic atmospheric perturbations can generate Atlantic Niño s.d. of ∼0.28±0.07 K, explaining ∼68±23% of the observed interannual variability. Thus, in state-of-the-art coupled models, Atlantic Niño variability strongly depends on the thermodynamic component (R(2)=0.92). Coupled dynamics acts to improve the characteristic Niño-like spatial structure but not necessarily the variance. Perturbations of the equatorial Atlantic trade winds (∼±1.53 m s(-1)) can drive changes in surface latent heat flux (∼±14.35 W m(-2)) and thus in surface temperature consistent with a first-order autoregressive process. By challenging the dynamical paradigm of equatorial Atlantic variability, our findings suggest that the current theories on its modelling and predictability must be revised.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...