Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 16(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38613018

RESUMO

Alopecia, a prevalent yet challenging condition with limited FDA-approved treatments which is accompanied by notable side effects, necessitates the exploration of natural alternatives. This study elucidated the hair growth properties of Gynostemma pentaphyllum leaf hydrodistillate (GPHD) both in vitro and in vivo. Furthermore, damulin B, a major component of GPHD, demonstrated hair growth-promoting properties in vitro. Beyond its established anti-diabetic, anti-obesity, and anti-inflammatory attributes, GPHD exhibited hair growth induction in mice parallel to minoxidil. Moreover, it upregulated the expression of autocrine factors associated with hair growth, including VEGF, IGF-1, KGF, and HGF. Biochemical assays revealed that minoxidil, GPHD, and damulin B induced hair growth via the Wnt/ß-catenin pathway through AKT signaling, aligning with in vivo experiments demonstrating improved expression of growth factors. These findings suggest that GPHD and damulin B contribute to the hair growth-inducing properties of dermal papilla cells through the AKT/ß-catenin signaling pathway.


Assuntos
Gynostemma , beta Catenina , Animais , Camundongos , Minoxidil , Proteínas Proto-Oncogênicas c-akt , Via de Sinalização Wnt , Cabelo
2.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673794

RESUMO

The heat shock response is an evolutionarily conserved mechanism that protects cells or organisms from the harmful effects of various stressors such as heat, chemicals toxins, UV radiation, and oxidizing agents. The heat shock response triggers the expression of a specific set of genes and proteins known as heat shock genes/proteins or molecular chaperones, including HSP100, HSP90, HSP70, HSP60, and small HSPs. Heat shock proteins (HSPs) play a crucial role in thermotolerance and aiding in protecting cells from harmful insults of stressors. HSPs are involved in essential cellular functions such as protein folding, eliminating misfolded proteins, apoptosis, and modulating cell signaling. The stress response to various environmental insults has been extensively studied in organisms from prokaryotes to higher organisms. The responses of organisms to various environmental stressors rely on the intensity and threshold of the stress stimuli, which vary among organisms and cellular contexts. Studies on heat shock proteins have primarily focused on HSP70, HSP90, HSP60, small HSPs, and ubiquitin, along with their applications in human biology. The current review highlighted a comprehensive mechanism of heat shock response and explores the function of heat shock proteins in stress management, as well as their potential as therapeutic agents and diagnostic markers for various diseases.


Assuntos
Proteínas de Choque Térmico , Resposta ao Choque Térmico , Humanos , Proteínas de Choque Térmico/metabolismo , Animais
3.
Nutrients ; 15(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38140341

RESUMO

Endoplasmic reticulum (ER) stress plays a pivotal role in adipogenesis, which encompasses the differentiation of adipocytes and lipid accumulation. Sustained ER stress has the potential to disrupt the signaling of the unfolded protein response (UPR), thereby influencing adipogenesis. This comprehensive review illuminates the molecular mechanisms that underpin the interplay between ER stress and adipogenesis. We delve into the dysregulation of UPR pathways, namely, IRE1-XBP1, PERK and ATF6 in relation to adipocyte differentiation, lipid metabolism, and tissue inflammation. Moreover, we scrutinize how ER stress impacts key adipogenic transcription factors such as proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding proteins (C/EBPs) along with their interaction with other signaling pathways. The cellular ramifications include alterations in lipid metabolism, dysregulation of adipokines, and aged adipose tissue inflammation. We also discuss the potential roles the molecular chaperones cyclophilin A and cyclophilin B play in adipogenesis. By shedding light on the intricate relationship between ER stress and adipogenesis, this review paves the way for devising innovative therapeutic interventions.


Assuntos
Adipogenia , Estresse do Retículo Endoplasmático , Humanos , Idoso , Resposta a Proteínas não Dobradas , Transdução de Sinais , Inflamação
4.
Nutrients ; 15(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37892465

RESUMO

Schizophrenia, a severe mental illness affecting about 1% of the population, manifests during young adulthood, leading to abnormal mental function and behavior. Its multifactorial etiology involves genetic factors, experiences of adversity, infection, and gene-environment interactions. Emerging research indicates that maternal infection or stress during pregnancy may also increase schizophrenia risk in offspring. Recent research on the gut-brain axis highlights the gut microbiome's potential influence on central nervous system (CNS) function and mental health, including schizophrenia. The gut microbiota, located in the digestive system, has a significant role to play in human physiology, affecting immune system development, vitamin synthesis, and protection against pathogenic bacteria. Disruptions to the gut microbiota, caused by diet, medication use, environmental pollutants, and stress, may lead to imbalances with far-reaching effects on CNS function and mental health. Of interest are short-chain fatty acids (SCFAs), metabolic byproducts produced by gut microbes during fermentation. SCFAs can cross the blood-brain barrier, influencing CNS activity, including microglia and cytokine modulation. The dysregulation of neurotransmitters produced by gut microbes may contribute to CNS disorders, including schizophrenia. This review explores the potential relationship between SCFAs, the gut microbiome, and schizophrenia. Our aim is to deepen the understanding of the gut-brain axis in schizophrenia and to elucidate its implications for future research and therapeutic approaches.


Assuntos
Microbioma Gastrointestinal , Esquizofrenia , Feminino , Gravidez , Humanos , Adulto Jovem , Adulto , Microbioma Gastrointestinal/fisiologia , Eixo Encéfalo-Intestino , Esquizofrenia/microbiologia , Barreira Hematoencefálica , Dieta , Ácidos Graxos Voláteis
5.
Nutrients ; 15(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37892541

RESUMO

The gut microbiome is a diverse bacterial community in the human gastrointestinal tract that plays important roles in a variety of biological processes. Short-chain fatty acids (SCFA) are produced through fermentation of dietary fiber. Certain microbes in the gut are responsible for producing SCFAs such as acetate, propionate and butyrate. An imbalance in gut microbiome diversity can lead to metabolic disorders and inflammation-related diseases. Changes in SCFA levels and associated microbiota were observed in IBD, suggesting an association between SCFAs and disease. The gut microbiota and SCFAs affect reactive oxygen species (ROS) associated with IBD. Gut microbes and SCFAs are closely related to IBD, and it is important to study them further.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Microbiota , Humanos , Ácidos Graxos Voláteis/metabolismo , Butiratos , Doenças Inflamatórias Intestinais/microbiologia
6.
Nutrients ; 15(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37432213

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a prevalent condition characterized by lipid accumulation in hepatocytes with low alcohol consumption. The development of sterile inflammation, which occurs in response to a range of cellular stressors or injuries, has been identified as a major contributor to the pathogenesis of NAFLD. Recent studies of the pathogenesis of NAFLD reported the newly developed roles of damage-associated molecular patterns (DAMPs). These molecules activate pattern recognition receptors (PRRs), which are placed in the infiltrated neutrophils, dendritic cells, monocytes, or Kupffer cells. DAMPs cause the activation of PRRs, which triggers a number of immunological responses, including the generation of cytokines that promote inflammation and the localization of immune cells to the site of the damage. This review provides a comprehensive overview of the impact of DAMPs and PRRs on the development of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/etiologia , Células de Kupffer , Monócitos , Neutrófilos , Inflamação
7.
Antioxidants (Basel) ; 12(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36978808

RESUMO

Pathogenic helminths have evolved mechanisms to preserve reproductive function while surviving long-term in the host via robust protective responses. A protective role of antioxidant enzymes in preventing DNA degradation has long been proposed, but little evidence has been provided. Here, we show that omega-class glutathione transferases (GSTOs) are critical for maintaining viability by protecting the reproductive cell DNA of the carcinogenic liver fluke, Clonorchis sinensis. Clonorchis sinensis GSTO (CsGSTO) activities modified by changes in the GSH/GSSG and NADPH/NADP+ molar ratios suppressed the overproduction of reactive oxygen species. CsGSTO1 and CsGSTO2 catalyzed deglutathionylation under physiologic and low-stress conditions (GSH/GSSG ratio of 6:1 or higher) but promoted glutathionylation under high-stress conditions (GSH/GSSG ratio of 3:1 or lower). Gliotoxin-induced functional disruption of CsGSTOs in living C. sinensis reduced the GSH/GSSG molar ratio and increased the production of protein glutathionylation (PSSG) under physiologic and low-stress conditions, indicating that suppression of GSTO function did not affect deglutathionylation. However, the perturbation of CsGSTOs decreased the GSH/GSSG ratio but also reduced PSSG production under high oxidative stress, demonstrating that glutathionylation was impeded. In response to oxidative stimuli, C. sinensis decreased GSTO-specific dehydroascorbate reductase and thiol transferase activities and the GSH/GSSG ratio, while it increased the NADPH/NADP+ ratio and PSSG. CsGSTOs utilized GSH to regulate GSH/GSSG and NADPH/NADP+ recycling and triggered a redox signal leading to nuclear translocation. Nuclear-imported CsGSTOs were modified by glutathionylation to prevent DNA damage. Antibodies specific to CsGSTOs dose-dependently inhibited this process. Disruption of CsGSTOs or the depletion of GSH caused glutathionylation defects, leading to DNA degradation. Our results demonstrate that CsGSTOs and the GSH system play a previously unappreciated role in protecting DNA from oxidative stress.

8.
Sci Rep ; 13(1): 1495, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707670

RESUMO

Recent therapeutic advances in breast cancer (BC) have improved survival outcomes; however, the prognosis for patients with bone metastasis (BM) remains poor. Hence, novel clinical biomarkers are needed to accurately predict BC BM as well as to promote personalized medicine. Here, we discovered a novel biomarker, TOR1B, for BM in BC patients via analysis of BC gene expression data and clinical information downloaded from open public databases. In cancer cells, we found high expression levels of TOR1B in the nucleus and endoplasmic reticulum. Regarding gene expression, the level of TOR1B was significantly upregulated in BC patients with BM (p < 0.05), and the result was externally validated. In addition, gene expression clearly demonstrated two distinct types of prognoses in ER- and PR-positive patients. In multivariate regression, the gene could be an independent predictor of BM in BC patients, i.e., a low expression level of TOR1B was associated with delayed metastasis to bone in BC patients (HR, 0.28; 95% CI 0.094-0.84). Conclusively, TOR1B might be a useful biomarker for predicting BM; specifically, patients with ER- and PR-positive subtypes would benefit from the clinical use of this promising prognostic biomarker.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Feminino , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/genética , Neoplasias da Mama/patologia , Núcleo Celular/metabolismo , Prognóstico
9.
Int J Mol Med ; 51(1)2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36484370

RESUMO

Cyclophilin is known to act as a molecular chaperone in the endoplasmic reticulum. Recent studies have reported that the expression of cyclophilin B (CypB) is increased in ob/ob mice and its inhibitor suppresses adipocyte differentiation. However, the mechanism of action of CypB in adipocytes remains to be elucidated. The present study investigated the role of CypB in 3T3­L1 adipocyte differentiation. It showed that the expression level of CypB was increased during 3T3­L1 adipocyte differentiation by reverse transcription­quantitative PCR and western blotting analysis. CypB knockdown using short interfering RNA delayed cell cycle progression from the G1/S to G2/M phase through the mammalian target of rapamycin (mTOR) signaling pathway and inhibited the expression levels of adipogenic transcription factors including peroxisome proliferator­activated receptor Î³ (PPARγ) and CCAAT­enhancer binding protein (C/EBP)α. Additionally, the accumulation of lipid droplets was inhibited by CypB knockdown. Conversely, overexpression of CypB promoted cell cycle progression from the G1/S to G2/M phase by the mTOR signaling pathway and enhanced the expression levels of adipogenic transcription factors including PPARγ and C/EBPα. Finally, the present study showed that CypB downregulated the expression of CHOP, a well­known negative regulator of adipogenesis. Taken together, the data suggested that CypB might serve important physiological regulatory roles in 3T3­L1 adipocyte differentiation.


Assuntos
Chaperonas Moleculares , Serina-Treonina Quinases TOR , Animais , Camundongos , Células 3T3-L1 , Fatores de Transcrição , Mamíferos
10.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38203294

RESUMO

Ketone bodies (KBs), such as acetoacetate and ß-hydroxybutyrate, serve as crucial alternative energy sources during glucose deficiency. KBs, generated through ketogenesis in the liver, are metabolized into acetyl-CoA in extrahepatic tissues, entering the tricarboxylic acid cycle and electron transport chain for ATP production. Reduced glucose metabolism and mitochondrial dysfunction correlate with increased neuronal death and brain damage during cerebral ischemia and neurodegeneration. Both KBs and the ketogenic diet (KD) demonstrate neuroprotective effects by orchestrating various cellular processes through metabolic and signaling functions. They enhance mitochondrial function, mitigate oxidative stress and apoptosis, and regulate epigenetic and post-translational modifications of histones and non-histone proteins. Additionally, KBs and KD contribute to reducing neuroinflammation and modulating autophagy, neurotransmission systems, and gut microbiome. This review aims to explore the current understanding of the molecular mechanisms underpinning the neuroprotective effects of KBs and KD against brain damage in cerebral ischemia and neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease.


Assuntos
Lesões Encefálicas , Dieta Cetogênica , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Humanos , Corpos Cetônicos , Neuroproteção , Fármacos Neuroprotetores/uso terapêutico , Infarto Cerebral
11.
Nutrients ; 14(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36501027

RESUMO

The clinical application of cisplatin, one of the most effective chemotherapeutic agents used to treat various cancers, has been limited by the risk of adverse effects, notably nephrotoxicity. Despite intensive research for decades, there are no effective approaches for alleviating cisplatin nephrotoxicity. This study aimed to investigate the protective effects and potential mechanisms of a Gynostemma pentaphyllum leaves hydrodistillate (GPHD) and its major component, damulin B, against cisplatin-induced nephrotoxicity in vitro and in vivo. A hydro-distillation method can extract large amounts of components within a short period of time using non-toxic, environmentally friendly solvent. We found that the levels of AMP-activated protein kinase α1 (AMPKα1), reactive oxygen species (ROS), and apoptosis were tightly associated with each other in HEK293 cells treated with cisplatin. We demonstrated that AMPKα1 acted as an anti-oxidant factor and that ROS generated by cisplatin suppressed the expression of AMPKα1 at the transcriptional level, thereby resulting in induction of apoptosis. Treatment with GPHD or damulin B effectively prevented cisplatin-induced apoptosis of HEK293 cells and cisplatin-induced acute kidney injury in mice by suppressing oxidative stress and maintaining AMPKα1 levels. Therefore, our study suggests that GPHD and damulin B may serve as prospective adjuvant agents against cisplatin-induced nephrotoxicity.


Assuntos
Cisplatino , Gynostemma , Humanos , Camundongos , Animais , Cisplatino/toxicidade , Células HEK293 , Apoptose , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Rim/metabolismo
12.
Nutrients ; 14(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36432618

RESUMO

The ketone bodies (KBs) ß-hydroxybutyrate and acetoacetate are important alternative energy sources for glucose during nutrient deprivation. KBs synthesized by hepatic ketogenesis are catabolized to acetyl-CoA through ketolysis in extrahepatic tissues, followed by the tricarboxylic acid cycle and electron transport chain for ATP production. Ketogenesis and ketolysis are regulated by the key rate-limiting enzymes, 3-hydroxy-3-methylglutaryl-CoA synthase 2 and succinyl-CoA:3-oxoacid-CoA transferase, respectively. KBs participate in various cellular processes as signaling molecules. KBs bind to G protein-coupled receptors. The most abundant KB, ß-hydroxybutyrate, regulates gene expression and other cellular functions by inducing post-translational modifications. KBs protect tissues by regulating inflammation and oxidative stress. Recently, interest in KBs has been increasing due to their potential for treatment of various diseases such as neurological and cardiovascular diseases and cancer. Cancer cells reprogram their metabolism to maintain rapid cell growth and proliferation. Dysregulation of KB metabolism also plays a role in tumorigenesis in various types of cancer. Targeting metabolic changes through dietary interventions, including fasting and ketogenic diets, has shown beneficial effects in cancer therapy. Here, we review current knowledge of the molecular mechanisms involved in the regulation of KB metabolism and cellular signaling functions, and the therapeutic potential of KBs and ketogenic diets in cancer.


Assuntos
Dieta Cetogênica , Neoplasias , Humanos , Ácido 3-Hidroxibutírico , Corpos Cetônicos/metabolismo , Transdução de Sinais , Neoplasias/tratamento farmacológico
13.
Biochem Biophys Res Commun ; 635: 37-45, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36257190

RESUMO

Doxorubicin is one of the most effective chemotherapeutic agents available for treating various cancers, including lung cancer-the leading cause of cancer death in both men and women. However, its clinical application has been impeded by severe adverse effects, notably cardiotoxicity. Development of cellular resistance to doxorubicin is another major obstacle that must be overcome for broader application of the drug. In the present study, we examined the therapeutic potential of beta-naphthoflavone (BNF), a synthetic derivative of a naturally occurring flavonoid, in combination with doxorubicin for the treatment of lung cancer. Among our novel observations were that BNF enhances the efficacy of doxorubicin by inducing doxorubicin accumulation, mitochondrial ROS generation, and JNK pathway signaling in lung cancer cells. These combined effects were also evident in many other cancer cell types. BNF further exhibited synergistic induction of apoptosis in lung cancer cells when combined with several other cancer drugs, including irinotecan, cisplatin, and 5-fluorouracil. Our results suggest that BNF can be developed as a promising adjuvant agent for enhancing the efficacy of doxorubicin.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Feminino , Sistema de Sinalização das MAP Quinases , Espécies Reativas de Oxigênio/metabolismo , beta-Naftoflavona/farmacologia , Apoptose , Doxorrubicina/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Antineoplásicos/farmacologia , Linhagem Celular Tumoral
14.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36077072

RESUMO

Compound C (CompC), an inhibitor of AMP-activated protein kinase, reduces the viability of various renal carcinoma cells. The molecular mechanism underlying anti-proliferative effect was investigated by flow cytometry and western blot analysis in Renca cells. Its effect on the growth of Renca xenografts was also examined in a syngeneic BALB/c mouse model. Subsequent results demonstrated that CompC reduced platelet-derived growth factor receptor signaling pathways and increased ERK1/2 activation as well as reactive oxygen species (ROS) production. CompC also increased the level of active Wee1 tyrosine kinase (P-Ser642-Wee1) and the inactive form of Cdk1 (P-Tyr15-Cdk1) while reducing the level of active histone H3 (P-Ser10-H3). ROS-dependent ERK1/2 activation and sequential alterations in Wee1, Cdk1, and histone H3 might be responsible for the CompC-induced G2/M cell cycle arrest and cell viability reduction. In addition, CompC reduced the adhesion, migration, and invasion of Renca cells in the in vitro cell systems, and growth of Renca xenografts in the BALB/c mouse model. Taken together, the inhibition of in vivo tumor growth by CompC may be attributed to the blockage of cell cycle progression, adhesion, migration, and invasion of tumor cells. These findings suggest the therapeutic potential of CompC against tumor development and progression.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Carcinoma de Células Renais/patologia , Divisão Celular , Modelos Animais de Doenças , Histonas , Humanos , Neoplasias Renais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio/metabolismo
17.
PLoS Negl Trop Dis ; 16(3): e0010240, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35294433

RESUMO

Cerebral paragonimiasis (CP), caused by aberrant migration of Paragonimus worms, frequently invokes serious illness. The causal relationship between the lesion characteristics and patients' symptoms has poorly been understood. CP serodiagnosis has not been properly evaluated to date. A total of 111 CP cases were diagnosed in our laboratory between 1982 and 2003. This study retrospectively assessed the clinical and imaging characteristics of the 105 patients along with the evaluation of diagnostic potentials of recombinant P. westermani yolk ferritin (rPwYF) by enzyme-linked immunosorbent assay (ELISA) employing patients' sera and cerebrospinal fluids (CSFs). We analyzed 60 male and 45 female patients; 50 early-stage patients with non-calcified enhancing nodule(s) (median age, 38 years; interquartile range [IQR], 24.75-52; median symptom duration, 0.75 years; IQR, 0.2-2) and 54 chronic cases having calcified lesion(s) (median age, 33 years; IQR, 25-41; median symptom duration, 10 years; IQR, 5-20). One patient showed a normal neuroimage. The patients were largely diagnosed in their 30s. The parietal lobe was most commonly affected, followed by occipital, frontal, and temporal lobes. Twenty-six patients had lesions encompassing ≥ two lobes. The patients complained mainly of seizures, headaches, hemiparesis, and focal neurologic deficits (P < 0.001). Seizures and visual defects were predominant in patients with calcified lesion(s) (P < 0.001). The diagnostic sensitivity and specificity of rPwYF against serum/CSF were 100%/97% and 97.2%/92.5%, respectively. The specific IgG antibody levels against rPwYF in sera and CSFs showed a positive correlation (r = 0.59). The clinical manifestations of the early-stage patients might be associated with cortical lesions or meningeal irritation, while those in the chronic stage were caused by conglomerated space-occupying lesions. rPwYF would be useful for the serodiagnosis of both early and chronic CP cases.


Assuntos
Paragonimíase , Paragonimus , Animais , Anticorpos Anti-Helmínticos , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Ferritinas , Humanos , Masculino , Paragonimíase/diagnóstico , Estudos Retrospectivos , Convulsões , Testes Sorológicos
18.
Cells ; 11(4)2022 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-35203301

RESUMO

Aggressive and recurrent gynecological cancers are associated with worse prognosis and a lack of effective therapeutic response. Ovarian cancer (OC) patients are often diagnosed in advanced stages, when drug resistance, angiogenesis, relapse, and metastasis impact survival outcomes. Currently, surgical debulking, radiotherapy, and/or chemotherapy remain the mainstream treatment modalities; however, patients suffer unwanted side effects and drug resistance in the absence of targeted therapies. Hence, it is urgent to decipher the complex disease biology and identify potential biomarkers, which could greatly contribute to making an early diagnosis or predicting the response to specific therapies. This review aims to critically discuss the current therapeutic strategies for OC, novel drug-delivery systems, and potential biomarkers in the context of genetics and molecular research. It emphasizes how the understanding of disease biology is related to the advancement of technology, enabling the exploration of novel biomarkers that may be able to provide more accurate diagnosis and prognosis, which would effectively translate into targeted therapies, ultimately improving patients' overall survival and quality of life.


Assuntos
Neoplasias Ovarianas , Qualidade de Vida , Biomarcadores , Carcinoma Epitelial do Ovário , Humanos , Recidiva Local de Neoplasia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/terapia , Tecnologia
19.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613569

RESUMO

One in three cancer deaths worldwide are caused by gastric and colorectal cancer malignancies. Although the incidence and fatality rates differ significantly from country to country, the rates of these cancers in East Asian nations such as South Korea and Japan have been increasing each year. Above all, the biggest danger of this disease is how challenging it is to recognize in its early stages. Moreover, most patients with these cancers do not present with any disease symptoms before receiving a definitive diagnosis. Currently, volatile organic compounds (VOCs) are being used for the early prediction of several other diseases, and research has been carried out on these applications. Exhaled VOCs from patients possess remarkable potential as novel biomarkers, and their analysis could be transformative in the prevention and early diagnosis of colon and stomach cancers. VOCs have been spotlighted in recent studies due to their ease of use. Diagnosis on the basis of patient VOC analysis takes less time than methods using gas chromatography, and results in the literature demonstrate that it is possible to determine whether a patient has certain diseases by using organic compounds in their breath as indicators. This study describes how VOCs can be used to precisely detect cancers; as more data are accumulated, the accuracy of this method will increase, and it can be applied in more fields.


Assuntos
Neoplasias Colorretais , Neoplasias Gástricas , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/análise , Biomarcadores , Cromatografia Gasosa-Espectrometria de Massas , Neoplasias Gástricas/diagnóstico , Expiração , Testes Respiratórios/métodos , Neoplasias Colorretais/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...