Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Clin Transl Med ; 12(8): e997, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35908277

RESUMO

BACKGROUND: The biological function of mesenchymal stem-like cells (MSLCs), a type of stromal cells, in the regulation of the tumour microenvironment is unclear. Here, we investigated the molecular mechanisms underlying extracellular matrix (ECM) remodelling and crosstalk between MSLCs and glioblastomas (GBMs) in tumour progression. METHODS: In vitro and in vivo co-culture systems were used to analyze ECM remodelling and GBM infiltration. In addition, clinical databases, samples from patients with GBM and a xenografted mouse model of GBM were used. RESULTS: Previous studies have shown that the survival of patients with GBM from whom MSLCs could be isolated is substantially shorter than that of patients from whom MSLCs could not be isolated. Therefore, we determined the correlation between changes in ECM-related gene expression in MSLC-isolatable patients with that in MSLC non-isolatable patients using gene set enrichment analysis (GSEA). We found that lysyl oxidase (LOX) and COL1A1 expressions increased in MSLCs via GBM-derived clusters of differentiation 40 ligand (CD40L). Mechanistically, MSLCs are reprogrammed by the CD40L/CD40/NFκB2 signalling axis to build a tumour infiltrative microenvironment involving collagen crosslinking. Importantly, blocking of CD40L by a neutralizing antibody-suppressed LOX expression and ECM remodelling, decreasing GBM infiltration in mouse xenograft models. Clinically, high expression of CD40L, clusters of differentiation 40 (CD40) and LOX correlated with poor survival in patients with glioma. This indicated that GBM-educated MSLCs promote GBM infiltration via ECM remodelling in the tumour microenvironment. CONCLUSION: Our findings provide mechanistic insights into the pro-infiltrative tumour microenvironment produced by GBM-educated MSLCs and highlight a potential therapeutic target that can be used for suppressing GBM infiltration.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Ligante de CD40/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos , Microambiente Tumoral
4.
Cell Death Discov ; 8(1): 271, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35614051

RESUMO

Breast cancer is the most common type of cancer in women, and approximately 70% of all breast cancer patients use endocrine therapy, such as estrogen receptor modulators and aromatase inhibitors. In particular, triple-negative breast cancer (TNBC) remains a major threat due to the lack of targeted treatment options and poor clinical outcomes. Here, we found that GPR110 was highly expressed in TNBC and GPR110 plays a key role in TNBC progression by engaging the RAS signaling pathway (via Gαs activation). High expression of GPR110 promoted EMT and CSC phenotypes in breast cancer. Consequently, our study highlights the critical role of GPR110 as a therapeutic target and inhibition of GPR110 could provide a therapeutic strategy for the treatment of TNBC patients.

5.
Cell Death Dis ; 13(4): 417, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35487888

RESUMO

Colorectal cancer (CRC) has a 5-year survival rate of <10%, as it can metastasize to the lungs and liver. Anticancer drugs and targeted therapies used to treat metastatic colorectal cancer have insufficient therapeutic efficacy and are associated with complications. Therefore, research to develop new targeted therapeutics is necessary. Here, we present a novel discovery that intracellular adhesion molecule-1 (ICAM-1) is a potential therapeutic target to enhance therapeutic effectiveness for CRC. ICAM-1 is an important regulator of cell-cell interactions and recent studies have shown that it promotes malignancy in several carcinomas. However, little is known about its effect on CRC. Therefore, we conducted a study to define the mechanism by which ICAM-1 acts. ICAM-1 is phosphorylated by tyrosine-protein kinase Met (c-MET), and phosphorylated ICAM-1 can interact with SRC to increase SRC activity. Consequently, ICAM-1 may further accelerate SRC signaling, promoting the malignant potential of cancer. In addition, treatment with antibodies targeting ICAM-1 showed excellent therapeutic effects in reducing metastasis and angiogenesis. These findings suggest for the first time that ICAM-1 is an important adapter protein capable of mediating the c-MET-SRC signaling axis. Therefore, ICAM-1 can be used as a novel therapeutic target and a metastatic marker for CRC.


Assuntos
Antineoplásicos , Neoplasias do Colo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Transdução de Sinais
6.
Adv Sci (Weinh) ; 9(2): e2102768, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34813169

RESUMO

Despite aggressive clinical treatment, recurrence of glioblastoma multiforme (GBM) is unavoidable, and the clinical outcome is still poor. A convincing explanation is the phenotypic transition of GBM cells upon aggressive treatment such as radiotherapy. However, the microenvironmental factors contributing to GBM recurrence after treatment remain unexplored. Here, it is shown that radiation-treated GBM cells produce soluble intercellular adhesion molecule-1 (sICAM-1) which stimulates the infiltration of macrophages, consequently enriching the tumor microenvironment with inflammatory macrophages. Acting as a paracrine factor, tumor-derived sICAM-1 induces macrophages to secrete wingless-type MMTV integration site family, member 3A (WNT3A), which promotes a mesenchymal shift of GBM cells. In addition, blockade of either sICAM-1 or WNT3A diminishes the harmful effect of radiation on tumor progression. Collectively, the findings indicate that cellular crosstalk between GBM and macrophage through sICAM-1-WNT3A oncogenic route is involved in the mesenchymal shift of GBM cells after radiation, and suggest that radiotherapy combined with sICAM-1 targeted inhibition would improve the clinical outcome of GBM patients.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Macrófagos/metabolismo , Mesoderma/metabolismo , Animais , Neoplasias Encefálicas/genética , Modelos Animais de Doenças , Glioblastoma/genética , Humanos , Masculino , Camundongos , Camundongos Nus
7.
Int J Mol Sci ; 22(20)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34681583

RESUMO

Radiation therapy is a current standard-of-care treatment and is used widely for GBM patients. However, radiation therapy still remains a significant barrier to getting a successful outcome due to the therapeutic resistance and tumor recurrence. Understanding the underlying mechanisms of this resistance and recurrence would provide an efficient approach for improving the therapy for GBM treatment. Here, we identified a regulatory mechanism of CD44 which induces infiltration and mesenchymal shift of GBM. Ionizing radiation (IR)-induced K-RAS/ERK signaling activation elevates CD44 expression through downregulation of miR-202 and miR-185 expression. High expression of CD44 promotes SRC activation to induce cancer stemness and EMT features of GBM cells. In this study, we demonstrate that the K-RAS/ERK/CD44 axis is a key mechanism in regulating mesenchymal shift of GBM cells after irradiation. These findings suggest that blocking the K-RAS activation or CD44 expression could provide an efficient way for GBM treatment.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Receptores de Hialuronatos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Radiação Ionizante , Transdução de Sinais/efeitos da radiação , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Linhagem Celular Tumoral , Movimento Celular/efeitos da radiação , Regulação para Baixo/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glioblastoma/metabolismo , Glioblastoma/mortalidade , Humanos , Receptores de Hialuronatos/antagonistas & inibidores , Receptores de Hialuronatos/genética , Estimativa de Kaplan-Meier , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo
10.
Cell Death Differ ; 27(11): 3004-3020, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32415280

RESUMO

Conventional screening methods for deubiquitinating enzymes (DUBs) have important limitations. A loss-of-function study based on the knockout of DUB genes in mammalian cells can provide an excellent model for exploring DUB function. Here, we used CRISPR-Cas9 to perform genome-scale knockout of the entire set of genes encoding ubiquitin-specific proteases (USPs), a DUB subfamily, and then systematically screened for DUBs that stabilize the Cdc25A oncoprotein. USP3 was identified as a deubiquitinase of Cdc25A. USP3 depletion reduces the Cdc25A protein level, resulting in a significant delay in cell-cycle progression, and reduces the growth of cervical tumor xenografts in nude mice. Clinically, USP3 expression is positively correlated with Cdc25A protein expression and the poorest survival in breast cancer. We envision that our DUB knockout library kit will facilitate genome-scale screening of functional DUBs for target proteins of interest in a wide range of biomedical fields.


Assuntos
Ciclo Celular/genética , Proteases Específicas de Ubiquitina/genética , Ubiquitinação , Neoplasias do Colo do Útero/metabolismo , Fosfatases cdc25/genética , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Análise de Sobrevida , Proteases Específicas de Ubiquitina/metabolismo , Neoplasias do Colo do Útero/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Fosfatases cdc25/metabolismo
11.
Cancer Res ; 80(11): 2217-2229, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32193292

RESUMO

Stemness and epithelial-mesenchymal transition (EMT) are two fundamental characteristics of metastasis that are controlled by diverse regulatory factors, including transcription factors. Compared with other subtypes of breast cancer, basal-type or triple-negative breast cancer (TNBC) has high frequencies of tumor relapse. However, the role of alpha-globin transcription factor CP2 (TFCP2) has not been reported as an oncogenic driver in those breast cancers. Here, we show that TFCP2 is a potent factor essential for EMT, stemness, and metastasis in breast cancer. TFCP2 directly bound promoters of EGF and TGFα to regulate their expression and stimulate autocrine signaling via EGFR. These findings indicate that TFCP2 is a new antimetastatic target and reveal a novel regulatory mechanism in which a positive feedback loop comprising EGF/TGFα and AKT can control malignant breast cancer progression. SIGNIFICANCE: TFCP2 is a new antimetastatic target that controls TNBC progression via a positive feedback loop between EGF/TGFα and the AKT signaling axis.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador alfa/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Progressão da Doença , Transição Epitelial-Mesenquimal , Receptores ErbB/metabolismo , Retroalimentação Fisiológica , Feminino , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Células MCF-7 , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica , Células-Tronco Neoplásicas , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/genética , Regulação para Cima
12.
Cell Commun Signal ; 17(1): 12, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760304

RESUMO

BACKGROUND: The existence of differentiated thyroid cells is critical to respond radioactive iodide treatment strategy in thyroid cancer, and loss of the differentiated phenotype is a trademark of iodide-refractive thyroid disease. While high-dose therapy has been beneficial to several cancer patients, many studies have indicated this clinical benefit was limited to patients having BRAF mutation. BRAF-targeted paired box gene-8 (PAX8), a thyroid-specific transcription factor, generally dysregulated in BRAF-mutated thyroid cancer. METHODS: In this study, thyroid iodine-metabolizing gene levels were detected in BRAF-transformed thyroid cells after low and high dose of ionizing radiation. Also, an mRNA-targeted approach was used to figure out the underlying mechanism of low (0.01Gyx10 or 0.1Gy) and high (2Gy) radiation function on thyroid cancer cells after BRAFV600E mutation. RESULTS: Low dose radiation (LDR)-induced PAX8 upregulation restores not only BRAF-suppressive sodium/iodide symporter (NIS) expression, one of the major protein necessary for iodine uptake in healthy thyroid, on plasma membrane but also regulate other thyroid metabolizing genes levels. Importantly, LDR-induced PAX8 results in decreased cellular transformation in BRAF-mutated thyroid cells. CONCLUSION: The present findings provide evidence that LDR-induced PAX8 acts as an important regulator for suppression of thyroid carcinogenesis through novel STAT3/miR-330-5p pathway in thyroid cancers.


Assuntos
Transformação Celular Neoplásica/patologia , Transformação Celular Neoplásica/efeitos da radiação , Proteínas Proto-Oncogênicas B-raf/metabolismo , Glândula Tireoide/patologia , Glândula Tireoide/efeitos da radiação , Animais , Carcinogênese/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta à Radiação , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Hipotireoidismo/patologia , Iodo/metabolismo , Camundongos Mutantes , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Biológicos , Mutação/genética , Fator de Transcrição PAX8/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Fator de Transcrição STAT3/metabolismo , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/radioterapia , Regulação para Cima/genética , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Oncogene ; 37(43): 5794-5809, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29973690

RESUMO

Understanding the molecular mechanisms that underlie the aggressive behavior and relapse of breast cancer may help in the development of novel therapeutic interventions. CUB-domain-containing protein 1 (CDCP1), a transmembrane adaptor protein, is highly maintained and required in the context of cellular metastatic potential in triple-negative breast cancer (TNBC). For this reason, gene expression levels of CDCP1 have been considered as a prognostic marker in TNBC. However, not rarely, transcript levels of genes do not reflect always the levels of proteins, due to the post-transcriptional regulation. Here we show that miR-17/20a control the FBXL14 E3 ligase, establishing FBXL14 as an upstream regulator of the CDCP1 pathway. FBXL14 acts as an novel interaction partner of CDCP1, and facilitates its ubiquitination and proteasomal degradation with an enhanced capacity to suppress CDCP1 protein stability that eventually prevents CDCP1 target genes involved in breast cancer metastasis. Our findings first time uncovers the regulatory mechanism of CDCP-1 protein stabilization, more predictable criteria than gene expression levels for prognosis of breast cancer patients.


Assuntos
Antígenos CD/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas F-Box/metabolismo , MicroRNAs/genética , Proteínas de Neoplasias/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Antígenos CD/genética , Antígenos de Neoplasias , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular , Proteínas F-Box/genética , Feminino , Células HEK293 , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Invasividade Neoplásica/genética , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Prognóstico , Transplante Heterólogo , Neoplasias de Mama Triplo Negativas/mortalidade , Ubiquitina-Proteína Ligases/genética
14.
Oncotarget ; 8(47): 83100-83113, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-29137327

RESUMO

Advanced or progressive cancers share common traits such as altered transcriptional modulation, genetic modification, and abnormal post-translational regulation. These processes influence protein stability and cellular activity. Intercellular adhesion molecule-1 (ICAM-1) is involved in the malignant progression of various human cancers, including breast, liver, renal, and pancreatic cancers, but protein stability has not been deal with in metastatic breast cancer. Additionally, the relevance of the stability maintenance of ICAM-1 protein remains obscure. Here, we identified a novel interaction of E3 ligase FBXO4 that is specifically presented to ICAM-1. To understand how FBXO4 modulates ICAM-1 stability, we investigated ICAM-1-overexpressing or knockdown metastatic/non-metastatic breast cancers. ICAM-1 was found to influence tumor progression and metastasis, whereas FBXO4 regulated aggressive tumorigenic conditions. These results demonstrate that FBXO4 is a major regulator of ICAM-1 stability and that alterations in the stability of ICAM-1 can influence therapeutic outcome in metastatic cancer.

15.
Korean J Anesthesiol ; 63(5): 431-5, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23198037

RESUMO

BACKGROUND: The patient-controlled sedation (PCS) allows for rapid individualized titration of sedative drugs. Propofol has been the most widely used IV adjuvant, during the monitored anesthesia care (MAC). This study was designed to compare the sedation quality, side effect and recovery of the propofol alone, and propofol-remifentanil combination, using PCS for breast biopsy. METHODS: Seventy five outpatients, undergoing breast biopsy procedures with local anesthesia, were randomly assigned to receive propofol alone (group P), propofol-25 ug/ml of remifentanil (group PR25), and propofol-50 ug/ml of remifentanil (group PR50), using PCS. Pain visual analogue scores (VAS) and digit symbol substitution test (DSST), Vital signs, bi-spectral index (BIS) and observer assessment of alertness and sedation (OAA/S) score were recorded. RESULTS: Apply/Demand ratio in the group PR50 had a significant increase over the other groups (P < 0.05). The incidence of excessive sedation and dizziness were significantly more frequent in the group PR50 (P < 0.05). BIS and OAA/S score significantly decreased in the group PR25, PR50 at 15 min after the operation, the end of surgery (P < 0.05). At 5 min after the start of PCS, patients in the group PR25 and PR50 gave significantly less correct responses on the DSST than that of the group P (P < 0.05). CONCLUSIONS: Compared with the propofol alone, intermittent bolus injection of propofol-remifentanil mixture could be used, appropriately, for the sedation and analgesia during MAC. The group PR25 in a low dose of remifentanil has more advantages in terms of sedation and satisfaction because of the group PR50's side effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...