Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 25(35): 35492-35500, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30350146

RESUMO

Chromium (Cr) pollution is at a worrying level in a region of oilseed rape production in China. Sulfur (S) is an indispensable element for plants that has been confirmed to play an important role in regulating plant response to heavy metal stress. The present study was conducted to examine the role of S in alleviating Cr toxicity in oilseed rape. Cr stress strongly induced oxidative stress and inhibited plant growth. Application of S significantly enhanced the tolerance of oilseed rape exposed to Cr stress by activating several detoxification mechanisms including the ascorbate-glutathione (AsA-GSH) enzyme defense system and GSH production. The Cr and phytochelatins (PC) contents in the root under S treatment were markedly higher than those under Cr stress. The transcript abundances of the heavy metal transporters HMA2 and HMA4 were lower under S treatment than under Cr treatment. Most Cr was restricted to roots, and the translocation factor (TF) of Cr was markedly decreased in oilseed rape. In conclusion, our study revealed that S application is advantageous to oilseed rape defense against Cr toxicity and inhibits Cr translocation from roots to shoots.


Assuntos
Antioxidantes/metabolismo , Brassica napus/enzimologia , Cromo/análise , Poluentes do Solo/análise , Compostos de Sulfidrila/metabolismo , Enxofre/metabolismo , Brassica napus/efeitos dos fármacos , Brassica napus/crescimento & desenvolvimento , China , Cromo/metabolismo , Glutationa/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fitoquelatinas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/enzimologia , Brotos de Planta/crescimento & desenvolvimento , Poluentes do Solo/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-29997377

RESUMO

Kenaf (Hibiscus cannabinus L.) with high tolerance to chromium (Cr) can be used in the phytoremediation of chromium-contaminated soil. However, the mechanisms of chromium accumulation and tolerance in kenaf are still unclear. A hydroponic experiment was taken to screen two kenaf cultivars with Cr tolerance among nine kenaf cultivars via a tolerance index. This is first time the ascorbate-glutathione (AsA-GSH) cycle and chloroplast structural changes involved in Cr tolerance of two kenaf cultivars are explored. This study indicated that enhancement of chromium concentrations reduced nine kenaf growth rates and plant biomass. In addition, in all the nine cultivars, the roots had higher Cr accumulation than the shoots. Cr-tolerant cultivar Zhe70-3 with the maximum tolerant index had the significantly higher enzymatic activities of ascorbate peroxidase (APX), glutathione reductase (GR), dehydroascorbate reductase (DHAR) and mono- dehydroascorbate reductase (MDHAR) in non-enzymatic antioxidant system compared to Cr-sensitive cultivar Zhe77-1. In addition, higher GSH and AsA contents and lower damages of chloroplast ultrastructure were observed in Zhe70-3 under Cr treatment. In conclusion, Cr stress can cause less oxidative stress and destruction of chloroplast ultrastructure in Cr-tolerant cultivar Zhe70-3, and the AsA-GSH cycle may play a crucial role in kenaf Cr tolerance.


Assuntos
Ascorbato Peroxidases/metabolismo , Cromo/metabolismo , Glutationa Redutase/metabolismo , Hibiscus/efeitos dos fármacos , Hibiscus/metabolismo , Estresse Oxidativo , Antioxidantes , Biodegradação Ambiental , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo
3.
Int J Mol Sci ; 18(8)2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28933771

RESUMO

Cadmium (Cd) pollution in food chains pose a potential health risk for humans. Sulfur (S) is a significant macronutrient that plays a significant role in the regulation of plant responses to diverse biotic and abiotic stresses. However, no information is currently available about the impact of S application on ascorbate-glutathione metabolism (ASA-GSH cycle) of Pakchoi plants under Cd stress. The two previously identified genotypes, namely, Aikangqing (a Cd-tolerant cultivar) and Qibaoqing (a Cd-sensitive cultivar), were utilized to investigate the role of S to mitigate Cd toxicity in Pakchoi plants under different Cd regimes. Results showed that Cd stress inhibited plant growth and induced oxidative stress. Exogenous application of S significantly increased the tolerance of Pakchoi seedlings suffering from Cd stress. This effect was demonstrated by increased growth parameters; stimulated activities of the antioxidant enzymes and upregulated genes involved in the ASA-GSH cycle and S assimilation; and by the enhanced ASA, GSH, phytochelatins, and nonprotein thiol production. This study shows that applying S nutrition can mitigate Cd toxicity in Pakchoi plants which has the potential in assisting the development of breeding strategies aimed at limiting Cd phytoaccumulation and decreasing Cd hazards in the food chain.


Assuntos
Antioxidantes/farmacologia , Brassica/efeitos dos fármacos , Plântula/efeitos dos fármacos , Enxofre/farmacologia , Ácido Ascórbico/metabolismo , Brassica/crescimento & desenvolvimento , Cádmio/toxicidade , Glutationa/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Estresse Fisiológico/efeitos dos fármacos
4.
PeerJ ; 5: e3232, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28484671

RESUMO

BACKGROUND: WRKY proteins, which comprise one of the largest transcription factor (TF) families in the plant kingdom, play crucial roles in plant development and stress responses. Despite several studies on WRKYs in wheat (Triticum aestivum L.), functional annotation information about wheat WRKYs is limited. RESULTS: Here, 171 TaWRKY TFs were identified from the whole wheat genome and compared with proteins from 19 other species representing nine major plant lineages. A phylogenetic analysis, coupled with gene structure analysis and motif determination, divided these TaWRKYs into seven subgroups (Group I, IIa-e, and III). Chromosomal location showed that most TaWRKY genes were enriched on four chromosomes, especially on chromosome 3B. In addition, 85 (49.7%) genes were either tandem (5) or segmental duplication (80), which suggested that though tandem duplication has contributed to the expansion of TaWRKY family, segmental duplication probably played a more pivotal role. Analysis of cis-acting elements revealed putative functions of WRKYs in wheat during development as well as under numerous biotic and abiotic stresses. Finally, the expression of TaWRKY genes in flag leaves, glumes, and lemmas under water-deficit condition were analyzed. Results showed that different TaWRKY genes preferentially express in specific tissue during the grain-filling stage. CONCLUSION: Our results provide a more extensive insight on WRKY gene family in wheat, and also contribute to the screening of more candidate genes for further investigation on function characterization of WRKYs under various stresses.

5.
Ecotoxicol Environ Saf ; 124: 129-137, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26513528

RESUMO

We investigated the ameliorative role of sulfur (S) in protecting plants against cadmium (Cd) toxicity by using two pakchoi (Brassica chinensis L.) cultivars with different Cd tolerance levels. The exposure of pakchoi seedlings to 100µM Cd inhibited plant growth, increased superoxide content, enhanced membrane lipid peroxidation, and induced Cd accumulation in the roots and shoots. Application of S to Cd-stressed plants alleviated Cd-induced oxidative stress by promoting the capacity of the ascorbate (AsA)-glutathione (GSH) cycle, enhanced S assimilation by increasing the activity of ATP sulfurylase (ATPS) and o-acetylserine(thiol)lyase (OASTL), and decreased Cd translocation from the roots to the shoots by enhancing phytochelatins (PCs) biosynthesis. Results suggested that S reversed Cd-induced growth inhibition and oxidative stress by restraining Cd translocation from the roots to the shoots and upregulating S assimilation and GSH metabolism, including the AsA-GSH cycle and PCs synthesis.


Assuntos
Brassica/efeitos dos fármacos , Cádmio/toxicidade , Substâncias Protetoras/farmacologia , Poluentes do Solo/toxicidade , Enxofre/farmacologia , Ácido Ascórbico/metabolismo , Brassica/metabolismo , Cádmio/farmacocinética , Cisteína Sintase/metabolismo , Tolerância a Medicamentos , Glutationa/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Poluentes do Solo/farmacocinética , Sulfato Adenililtransferase/metabolismo
6.
Environ Sci Pollut Res Int ; 20(1): 163-74, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22669564

RESUMO

Selection of poplar species with greater Cd tolerance and exploiting the physiological mechanisms involved in Cd tolerance are crucial for application of these species to phyto-remediation. The aim of this study is to investigate variation in Cd tolerance among the six poplar species and its underlying physiological mechanisms. Cuttings of six Populus species were cultivated for 10 weeks before exposure to either 0 or 200 µM CdSO(4) for 20 days. Gas exchange in mature leaves was determined by a portable photosynthesis system. Cd concentrations in tissues were analyzed by a flame atomic absorbance spectrometry. Subsequently, Cd amount per plant, bio-concentration factor (BCF) and translocation factor (T (f)) were calculated. Nonenzymatic compounds and activities of antioxidative enzymes in tissues were analyzed spectrophotometrically. Cd exposure caused decline in photosynthesis in four poplar species including Populus cathayana (zhonghua 1). Among the six species, P. cathayana (zhonghua 1) displayed the highest Cd concentrations in tissues, the largest Cd amount in aerial parts, the highest BCF in aerial parts and T (f) under Cd exposure. Under Cd stress, increases in total soluble sugars in roots but decreases in starch in roots, wood, and leaves of P. cathayana (zhonghua 1) were found. Induced O (2) (•-) and H(2)O(2) production in roots and leaves, and increases in free proline, soluble phenolics, and activities of antioxidative enzymes were observed in P. cathayana (zhonghua 1). Based on results of this pot experiment, it is concluded that P. cathayana (zhonghua 1) is superior to other five species for Cd phyto-remediation, and its well-coordinated physiological changes under Cd exposure confer the great Cd tolerance of this species.


Assuntos
Adaptação Fisiológica , Cádmio/toxicidade , Populus/fisiologia , Poluentes do Solo/toxicidade , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Populus/efeitos dos fármacos
7.
Sheng Wu Gong Cheng Xue Bao ; 25(5): 739-44, 2009 May.
Artigo em Chinês | MEDLINE | ID: mdl-19670644

RESUMO

We stimulated preadipocyte of mice with calcium acetate, p38 mitogen-activated protein kinase (p38 MAPK) inhibitor SB203580, the paralysors and excitomotors of calcium channel. Then we detected expression level of preadipocyte differentiation's marker genes and calcium signal related acceptor genes by real-time PCR, and determined intracellular free Ca2+ concentration ([Ca2+]i]) with Fura-2/AM, intracellular lipid accumulation by oil red O staining. Our aim was to investigate the potential mechanism between calcium signal and preadipocyte differentiation. The results indicated that the paralysors and excitomotors of calcium channel changed the expression level of lipoprotein lipase (LPL), peroxisome proliferators-activated receptor gamma (PPARgamma), fatty acid synthetase (FAS), and the lipid accumulation, markedly. Compared with exocellular Ca2+'s decrease, inhibited intracellular Ca2+'s liberation can promoted preadipocyte differentiation (P < 0.01), and compared with intracellular Ca2+'s increase, promoted exocellular Ca2+'s ingest inhibited preadipocyte differentiation (P < 0.01). SB203580 degraded [Ca2+]i, promoted differentiation marker genes' expression and lipid accumulation in preadipocyte (P < 0.01). But calcium signal didn't have effects to vitamin D receptor (VDR) and extracellular Ca2+-sensing receptor (CaSR)'s expression. It indicated that calcium signal may effect preadipocyte different and lipid accumulation by p38 MAPK pathway.


Assuntos
Adipócitos/citologia , Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Diferenciação Celular/fisiologia , Lipídeos/biossíntese , Animais , Células Cultivadas , Imidazóis/farmacologia , Camundongos , Piridinas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA