Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Environ Pollut ; 342: 123074, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38048870

RESUMO

Chlorine (Cl)-containing chemicals, including hydrogen chloride, generated during thermal degradation of polyvinyl chloride (PVC) and corresponding mixture impede the chemical recycling of PVC-containing plastic wastes. While upgrading plastic-derived vapors, the presence of Cl-containing chemicals may deactivate the catalysts. Accordingly, herein, catalytic upgrading of pyrolysis vapor prepared from a mixture of PVC and polyolefins is performed using a fixed-bed reactor comprising zeolites. Among the H-forms of zeolites (namely, ZSM-5, Y, ß, and chabazite) used in this study, a higher yield of gas products composed of hydrocarbons with lower carbon numbers is obtained using H-ZSM-5, thus indicating further decomposition of the pyrolysis vapor to C1-C4 hydrocarbons on it. Although the formation of aromatic compounds is better on H-ZSM-5, product distributions can be adjusted by further modifying the acidic properties via the alteration of the Si/Al molar ratio, and maximum yields of C1-C4 compounds (60.8%) and olefins (64.7%) are achieved using a Si/Al molar ratio of 50. Additionally, metal ion exchange on H-ZSM-5 is conducted, and upgrading of PVC-containing waste-derived vapor to aromatic chemicals and small hydrocarbon molecules was successfully performed using Co-substituted H-ZSM-5. It reveals that the highest yield of gas products on 1.74 wt% cobalt (Co)-substituted H-ZSM-5 is acquired via the selection of an appropriate metal and metal ion concentration adjustment. Nevertheless, introduction of excess Co into the H-ZSM-5 surface decreases the cracking activity, thereby implying that highly distributed Co is required to achieve excellent cracking activity. The addition of Co also adjusted the acid types of H-ZSM-5, and more Lewis acid sites compared to Brønsted acid sites selectively produced olefins and naphthenes over paraffins and aromatics. The proposed approach can be a feasible process to produce valuable petroleum-replacing chemicals from Cl-containing mixed plastic wastes, contributing to the closed loops for upcycling plastic wastes.


Assuntos
Cloro , Zeolitas , Zeolitas/química , Hidrocarbonetos , Alcenos/química , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...