Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ginseng Res ; 45(3): 442-449, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34025137

RESUMO

BACKGROUND: Panax ginseng is an important crop in Asian countries given its pharmaceutical uses. It is usually harvested after 4-6 years of cultivation. However, various abiotic stresses have led to its quality reduction. One of the stress causes is high content of heavy metal in ginseng cultivation area. Plant growth-promoting rhizobacteria (PGPR) can play a role in healthy growth of plants. It has been considered as a new trend for supporting the growth of many crops in heavy metal occupied areas, such as Aluminum (Al). METHODS: In vitro screening of the plant growth promoting activities of five tested strains were detected. Surface-disinfected 2-year-old ginseng seedlings were dipping in Rhizobium panacihumi DCY116T suspensions for 15 min and cultured in pots for investigating Al resistance of P. ginseng. The harvesting was carried out 10 days after Al treatment. We then examined H2O2, proline, total soluble sugar, and total phenolic contents. We also checked the expressions of related genes (PgCAT, PgAPX, and PgP5CS) of reactive oxygen species scavenging response and pyrroline-5-carboxylate synthetase by reverse transcription polymerase chain reaction (RT-PCR) method. RESULTS: Among five tested strains isolated from ginseng-cultivated soil, R. panacihumi DCY116T was chosen as the potential PGPR candidate for further study. Ginseng seedlings treated with R. panacihumi DCY116T produced higher biomass, proline, total phenolic, total soluble sugar contents, and related gene expressions but decreased H2O2 level than nonbacterized Al-stressed seedlings. CONCLUSION: R. panacihumi DCY116T can be used as potential PGPR and "plant strengthener" for future cultivation of ginseng or other crops/plants that are grown in regions with heavy metal exposure.

2.
J Ginseng Res ; 45(2): 218-227, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33841002

RESUMO

BACKGROUND: Panax ginseng is one of the most important medicinal plants and is usually harvested after 5 to 6 years of cultivation in Korea. Heavy metal (HM) exposure is a type of abiotic stress that can induce oxidative stress and decrease the quality of the ginseng crop. Siderophore-producing rhizobacteria (SPR) may be capable of bioremediating HM contamination. METHODS: Several isolates from ginseng rhizosphere were evaluated by in vitro screening of their plant growth-promoting traits and HM resistance. Subsequently, in planta (pot tests) and in vitro (medium tests) were designed to investigate the SPR ability to reduce oxidative stress and enhance HM resistance in P. ginseng inoculated with the SPR candidate. RESULTS: In vitro tests revealed that the siderophore-producing Mesorhizobium panacihumi DCY119T had higher HM resistance than the other tested isolates and was selected as the SPR candidate. In the planta experiments, 2-year-old ginseng seedlings exposed to 25 mL (500 mM) Fe solution had lower biomass and higher reactive oxygen species level than control seedlings. In contrast, seedlings treated with 108 CFU/mL DCY119T for 10 minutes had higher biomass and higher levels of antioxidant genes and nonenzymatic antioxidant chemicals than untreated seedlings. When Fe concentration in the medium was increased, DCY119T can produce siderophores and scavenge reactive oxygen species to reduce Fe toxicity in addition to providing indole-3-acetic acid to promote seedling growth, thereby conferring inoculated ginseng with HM resistance. CONCLUSIONS: It was confirmed that SPR DCY119T can potentially be used for bioremediation of HM contamination.

3.
Arch Microbiol ; 203(5): 2193-2198, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33620525

RESUMO

A novel Gram-reaction positive-, catalase and oxidase negative-, rod-shaped, facultatively anaerobic bacterial strain, DCY120T, was isolated from the gut of honeybee (Apis cerana) in Gyeonggi-do, South Korea. Strain DCY120T belongs to the genus Bombilactobacillus and is moderately related to Bombilactobacillus mellis Hon2T (94.1% similarity), Bombilactobacillus bombi BTLCH M1/2T (93.8%), and Bombilactobacillus mellifer Bin4NT (93.5%) based on 16S rRNA gene sequence analysis. The genome of strain DCY120T was sequenced and the average nucleotide identity (ANI) between strain DCY120T and the related Bombilactobacillus type strains were below the threshold value (95-96%) for species delineation. The major fatty acids were C16:0, C18:1 ω9c, Summed C19:1 ω6c/C19:0 cyclo ω10c/C19:0 ω6 and Summed C18:1 ω7c/C18:1 ω6c. The major polar lipids were diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), one glycolipid (GL), and one unidentified aminophospholipid (APL). The amino acids in peptidoglycan of strain DCY120T were lysine, alanine, glutamic acid, and aspartic acid. In conclusion, the description of phenotypic and genotypic properties support strain DCY120T as a novel species within the genus Bombilactobacillus, for which the name Bombilactobacillus apium sp. nov. is proposed. The type strain is DCY120T (= KCTC 43194T = JCM 34006T).


Assuntos
Abelhas/microbiologia , Lactobacillaceae , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases/genética , DNA Bacteriano/genética , Ácidos Graxos/química , Genoma Bacteriano/genética , Glicolipídeos , Lactobacillaceae/classificação , Lactobacillaceae/genética , Lactobacillaceae/isolamento & purificação , Hibridização de Ácido Nucleico , Peptidoglicano/química , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA
4.
Molecules ; 25(19)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987784

RESUMO

Ginseng is a traditional medicinal herb commonly consumed world-wide owing to its unique family of saponins called ginsenosides. The absorption and bioavailability of ginsenosides mainly depend on an individual's gastrointestinal bioconversion abilities. There is a need to improve ginseng processing to predictably increase the pharmacologically active of ginsenosides. Various types of ginseng, such as fresh, white, steamed, acid-processed, and fermented ginsengs, are available. The various ginseng processing methods produce a range ginsenoside compositions with diverse pharmacological properties. This review is intended to summarize the properties of the ginsenosides found in different Panax species as well as the different processing methods. The sugar moiety attached to the C-3, C-6, or C-20 deglycosylated to produce minor ginsenosides, such as Rb1, Rb2, Rc, Rd→Rg3, F2, Rh2; Re, Rf→Rg1, Rg2, F1, Rh1. The malonyl-Rb1, Rb2, Rc, and Rd were demalonylated into ginsenoside Rb1, Rb2, Rc, and Rd by dehydration. Dehydration also produces minor ginsenosides such as Rg3→Rk1, Rg5, Rz1; Rh2→Rk2, Rh3; Rh1→Rh4, Rk3; Rg2→Rg6, F4; Rs3→Rs4, Rs5; Rf→Rg9, Rg10. Acetylation of several ginsenosides may generate acetylated ginsenosides Rg5, Rk1, Rh4, Rk3, Rs4, Rs5, Rs6, and Rs7. Acid processing methods produces Rh1→Rk3, Rh4; Rh2→Rk1, Rg5; Rg3→Rk2, Rh3; Re, Rf, Rg2→F1, Rh1, Rf2, Rf3, Rg6, F4, Rg9. Alkaline produces Rh16, Rh3, Rh1, F4, Rk1, ginsenoslaloside-I, 20(S)-ginsenoside-Rh1-60-acetate, 20(R)-ginsenoside Rh19, zingibroside-R1 through hydrolysis, hydration addition reactions, and dehydration. Moreover, biological processing of ginseng generates the minor ginsenosides of Rg3, F2, Rh2, CK, Rh1, Mc, compound O, compound Y through hydrolysis reactions, and synthetic ginsenosides Rd12 and Ia are produced through glycosylation. This review with respect to the properties of particular ginsenosides could serve to increase the utilization of ginseng in agricultural products, food, dietary supplements, health supplements, and medicines, and may also spur future development of novel highly functional ginseng products through a combination of various processing methods.


Assuntos
Ginsenosídeos/química , Ginsenosídeos/isolamento & purificação , Panax/química
5.
Molecules ; 25(15)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751233

RESUMO

Ginsenosides are the major bioactive constituents of Panax ginseng, which have pharmacological effects. Although there are several reviews in regards to ginsenosides, new ginsenosides have been detected continually in recent years. This review updates the ginsenoside list from P. ginseng to 170 by the end of 2019, and aims to highlight the diversity of ginsenosides in multiple dimensions, including chemical structure, tissue spatial distribution, time, and isomeride. Protopanaxadiol, protopanaxatriol and C17 side-chain varied (C17SCV) manners are the major types of ginsenosides, and the constitute of ginsenosides varied significantly among different parts. Only 16 ginsenosides commonly exist in all parts of a ginseng plant. Protopanaxadiol-type ginsenoside is dominant in root, rhizome, leaf, stem, and fruit, whereas malonyl- and C17SCV-type ginsenosides occupy a greater proportion in the flower and flower bud compared with other parts. In respects of isomeride, there are 69 molecular formulas corresponding to 170 ginsenosides, and the median of isomers is 2. This is the first review on diversity of ginsenosides, providing information for reasonable utilization of whole ginseng plant, and the perspective on studying the physiological functions of ginsenoside for the ginseng plant itself is also proposed.


Assuntos
Panax/química , Extratos Vegetais/química , Saponinas/química , Ginsenosídeos/química , Isomerismo , Espectrometria de Massas , Metabolômica , Especificidade de Órgãos , Extratos Vegetais/isolamento & purificação , Saponinas/isolamento & purificação , Relação Estrutura-Atividade
6.
Materials (Basel) ; 13(14)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32709058

RESUMO

Dendropanax morbifera is a versatile plant that has been used as a herbal medicine due to its various useful medicinal effects. To protect its active component from biological stress and increase its drug efficacy as well as drug bioavailability, nanoemulsion was prepared. Dendropanax morbifera zinc oxide nanoparticles (DM-ZnO NPs) were synthesized using the plant extract via the co-precipitation method and loaded with active indole-3-carbinol for nanoemulsion formulation using the ultrasonication process. Field emission transmission electron microscope revealed the flower shape of the Dendropanax morbifera indole-3-carbinol zinc oxide nanoemulsion (DM-ZnO-I3C-NE). In contrast, DM-ZnO NPs showed a spheroid shape that coincides agreeably with field emission electron scanning microscope. The hydrodynamic sizes by dynamic light scattering are about 65 ± 3 nm and 239.6 ± 6 nm and the crystallite sizes from X-ray diffraction are 11.52 nm and 16.07 nm for DM-ZnO NPs and DM-ZnO-I3C-NE, respectively. In vitro analysis revealed the cytotoxicity of DM-ZnO-I3C-NE against a human lung cancer cell line (A549) at 12.5 µg/mL as well as reactive oxygen species (ROS) production. The DM-ZnO-I3C-NE-induced ROS generation level was higher than that of DM-ZnO NPs and free indole-3-carbinol. The synergistic effect of DM-ZnO and indole-3-carbinol indicates DM-ZnO-I3C-NE as a potential candidate for future lung cancer drug and could be scope for functional food.

7.
Arch Microbiol ; 202(6): 1341-1347, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32152645

RESUMO

A new bacterium, designated DCY113T, was isolated from ginseng cultivation soil in Gochang-gun, South Korea, and its taxonomic position identified by the polyphasic approach. 16S rRNA gene sequence analysis determined that this isolate belongs to the genus Paraburkholderia, and was closest to P. dipogonis DL7T (98.6%), P. phytofirmans PsJNT (98.5%), P. kirstenboschensis Kb15T (98.4%) and P. aromaticivorans BNT (98.1%). Strain DCY113T is Gram-reaction negative, strictly aerobic, rod-shaped, non-motile, and catalase and oxidase positive. The predominant isoprenoid quinone of DCY113T was ubiquinone Q-8. The major cellular fatty acids were C16:0, cyclo-C17:0 and the Summed feature 8 (C18:1ω7c and/or C18:1ω6c). The major polar lipids were diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), and an unknown amino lipid (AL1). The G+C content of the genomic DNA was 62.2 mol%. Average nucleotide identity (ANI) between strain DCY113T and the related Paraburkholderia type strains were below the threshold value for species delineation. This low DNA relatedness in combination with phylogenetic and phenotypic tests indicates that strain DCY113T cannot be assigned to any recognized species. Strain DCY113T was also found to have antifungal activity against the pathogenic fungi Cylindrocarpon destructans. In conclusion, this study found DCY113T to be a novel species within the genus Paraburkholderia, for which the name P. panacisoli is proposed. The type strain is DCY113T (= KCTC 52951T = JCM 32098T).


Assuntos
Antibiose , Burkholderiaceae/classificação , Burkholderiaceae/fisiologia , Hypocreales/fisiologia , Panax/microbiologia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , Burkholderiaceae/genética , DNA Bacteriano/genética , Ácidos Graxos/análise , Filogenia , RNA Ribossômico 16S/genética , Especificidade da Espécie
8.
Arch Microbiol ; 201(1): 99-105, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30259064

RESUMO

A novel bacterial strain designated DCY116T was isolated from ginseng-cultivated soil in Gochang-gun, Republic of Korea. Strain DCY116T, belongs to the genus Rhizobium, and is closely related to Rhizobium yantingense H66T (98.3%), Neorhizobium huautlense S02T (98.2%), Rhizobium soli DS-42T (98.1%), Rhizobium smilacinae PTYR-5T (97.9%), and Neorhizobium alkalisoli CCBAU 01393T (97.9%) based on 16S rRNA gene sequence analysis. Analysis of the housekeeping genes atpD, recA, and glnII showed low levels of sequence similarity (96.8%) between strain DCY116T and other closely related species. Strain DCY116T was Gram-stain negative, motile by peritrichous flagella, rod-shaped, strictly aerobic, catalase- and oxidase-positive. Q-10 was the predominant ubiquinone. The major cellular fatty acids were identified as C16:0 and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c). The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, and an unknown lipid (L1-3). Genomic DNA G + C content of strain DCY116T was determined to be 57.2 mol%. DNA-DNA homology values between strain DCY116T and closely related species of the genus Rhizobium were lower than 40%. Strain DCY116T produced indole-3-acetic acid, siderophores, and was able to solubilize phosphate as a potential plant growth promoting bacterium. In conclusion, the results of this study support strain DCY116T as a novel species of the genus Rhizobium, for which the name Rhizobium panacihumi is proposed. The type strain is DCY116T (= KCTC 62017T = JCM 32251T).


Assuntos
Panax/microbiologia , Desenvolvimento Vegetal/fisiologia , Rhizobium/classificação , Rhizobium/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/análise , Genes Essenciais/genética , Hibridização de Ácido Nucleico , Oxirredutases/genética , Filogenia , RNA Ribossômico 16S/genética , República da Coreia , Rhizobium/genética , Análise de Sequência de DNA , Solo , Microbiologia do Solo
9.
Curr Microbiol ; 76(1): 22-28, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30382345

RESUMO

A Gram-positive bacterium (DCY118T) was isolated from ginseng-cultivated soil in Gochang-gun, Republic of Korea. This isolate was assigned to the genus Ornithinimicrobium and is closely related to Ornithinimicrobium kibberense K22-20T (98.8%), O. pekingense DSM 21552T (98.5%), O. algicola JC311T (98.2%), and O. humiphilum DSM 12362T (97.9%) based on 16S rRNA gene sequence analysis. However, strain DCY118T showed < 55% DNA-DNA homology with closely related reference strains. Cells were non-motile, non-sporulating, catalase- and oxidase-positive, aerobic, short rods, and cocci, and produced light-yellow, circular, and smooth colonies on TSA medium. MK-8(H4) was the predominant menaquinone. The major cellular fatty acids were iso-C15:0, anteiso-C15:0, and C16:0. The polar lipid profile consisted of diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylinositol (PI), an unknown phospholipid (PL1), an unknown amino lipid (AL1), and unidentified polar lipids (L1-5). The genomic DNA G+C content was 71.1 mol%. The peptidoglycan contained L-ornithine as the diagnostic diamino acid. Whole-cell sugars were composed of glucose, arabinose, and xylose. Overall, data collected from phenotypic and genotypic tests during this study indicated that strain DCY118T could not be assigned to a recognized species. Strain DCY118T showed antagonistic activity against the fungal pathogens causing root rot in ginseng, i.e., Fusarium solani (KACC 44891T) and Cylindrocarpon destructans (KACC 44660T). The results from this study confirm the DCY118T strain as a new species within the genus Ornithinimicrobium, for which the name Ornithinimicrobium panacihumi is proposed. The type strain is DCY118T (=KCTC 39962T=JCM 32156T).


Assuntos
Antibiose/fisiologia , Fusarium/crescimento & desenvolvimento , Hypocreales/crescimento & desenvolvimento , Micrococcaceae/isolamento & purificação , Micrococcaceae/metabolismo , Panax/microbiologia , Raízes de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases/genética , DNA Bacteriano/genética , Ácidos Graxos/análise , Micrococcaceae/classificação , Micrococcaceae/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo
10.
J Microbiol ; 56(10): 748-752, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30267317

RESUMO

A Gram-negative, non-motile, aerobic, catalase-, and oxidasepositive bacterial strain, designated DCY117T, was isolated from ginseng cultivated soil in Gochang-gun, Republic of Korea, and was characterized taxonomically using a multifaceted approach. 16S rRNA gene sequence analysis revealed that strain DCY117T showed highest similarity to Lysobacter ruishenii CTN-1T (95.3%). Phylogenetic analysis revealed that closely related relatives of strain DCY117T were L. aestuarii S2-CT (95.1%), L. daejeonensis GH1-9T (95.0%), and L. caeni BUT-8T (94.9%). Diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), and phosphatidylethanolamine (PE) were the major polar lipids of strain DCY117T. The major isoprenoid quinone was Q-8. The major cellular fatty acids of strain DCY117T were iso-C15:0, iso-C16:0, and summed feature 9 (comprising iso-C17:1ω9c and/or 10-methyl-C16:0). Genomic DNA G + C content was 61.8 mol%. On the basis of our findings, strain DCY117T is a novel species in the genus Lysobacter. We propose the name Lysobacter panacihumi sp. nov., and the type strain is DCY117T (= KCTC 62019T = JCM 32168T).


Assuntos
Lysobacter/classificação , Panax/microbiologia , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/análise , Lysobacter/genética , Lysobacter/isolamento & purificação , Fosfolipídeos/análise , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA
11.
Arch Microbiol ; 200(10): 1457-1463, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30116848

RESUMO

A novel bacterium, designated DCY112T, was isolated from the rhizospheric soil of a ginseng-cultivated field in Gochang-gun, Republic of Korea. Based on 16S rRNA gene sequence analysis, this isolate was assigned to the genus Rhodanobacter and is closely related to Rhodanobacter soli DCY45T (98.0%) and R. umsongensis GR24-2T (98.0%). Strain DCY112T is Gram-negative, catalase- and oxidase-positive, aerobic, non-motile, rod-shaped, and produces yellow-pigmented colonies on R2A medium. Q-8 was the predominant respiratory quinone. The major cellular fatty acids were iso-C15:0, iso-C17:0, and summed feature 9 (iso-C17:1 ω9c and/or 10-methyl-C16:0). The major polar lipids were phosphatidylglycerol (PG), phosphatidylethanolamine (PE), an unknown amino lipid (AL1), and an unidentified polar lipid (L3). The genomic DNA G + C content was 65.2 mol%. DNA-DNA homology values between strain DCY112T and related strains were lower than 55%. The low DNA relatedness data in combination with phenotypic and genotypic tests indicated that strain DCY112T could not be assigned to a recognized species. Strain DCY112T showed antagonistic activity against the fungal pathogen Fusarium solani (KACC 44891T), which causes ginseng root rot. The results of this study support that strain DCY112T is a novel species belonging to the genus Rhodanobacter, for which the name Rhodanobacter ginsengiterrae is proposed. The type strain is DCY112T (= KCTC 62018T = JCM 32167T).


Assuntos
Antibiose , Fusarium/fisiologia , Gammaproteobacteria/fisiologia , Microbiologia do Solo , Composição de Bases , DNA Bacteriano/química , Ácidos Graxos/análise , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Panax , Filogenia , RNA Ribossômico 16S/genética , Rizosfera
12.
Arch Microbiol ; 200(8): 1151-1158, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29869675

RESUMO

The novel species DCY115T was isolated from ginseng-cultivated soil in Gochang province, Republic of Korea. The isolated strain was assigned to the genus Paraburkholderia due to its 16S rRNA gene sequence proximity to Paraburkholderia xenovorans LB400T (98.8%), Paraburkholderia terricola LMG 20594T (98.4%), Paraburkholderia graminis C4D1MT (98.2%), Paraburkholderia rhynchosiae WSM3937T (98.1%), and Paraburkholderia phytofirmans PsJNT (98.1%). Strain DCY115T is gram-negative, facultative aerobic, rod-shaped, non-motile, non-flagellated, and oxidase and catalase positive. The predominant isoprenoid quinone of DCY115T is ubiquinone Q-8. The major cellular fatty acids are C16:0, cyclo-C17:0, cyclo-C19:0 ω8c, summed feature 3 (C16:1 ω7c and/or C16:1 ω6c) and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c). The major polar lipids include diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), and an unknown amino lipid (AL1). The genomic DNA G + C content is 61.3 mol%. Phenotypic tests and chemotaxonomic analysis place strain DCY115T in the genus Paraburkholderia. DNA-DNA hybridization values between strain DCY115T and closely related reference strains were lower than 51%. The low DNA relatedness data in combination with phylogenetic and biochemical tests showed that strain DCY115T could not be assigned to any recognized species. Finally, strain DCY115T showed antagonistic activity against Fusarium solani (KACC 44891T) and Cylindrocarpon destructans (KACC 44660T), which are two root rot fungal pathogens of ginseng. In conclusion, the results in this study support strain DCY115T as a novel species within the genus Paraburkholderia for which the name Paraburkholderia panacihumi is proposed. The type strain is DCY115T (= KCTC 52952T = JCM 32099T).


Assuntos
Antibiose/fisiologia , Burkholderiaceae/classificação , Burkholderiaceae/isolamento & purificação , Panax/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases/genética , Burkholderiaceae/genética , Catalase/metabolismo , DNA Bacteriano/genética , Ácidos Graxos/análise , Fungos/crescimento & desenvolvimento , Hibridização de Ácido Nucleico , Oxirredutases/metabolismo , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Microbiologia do Solo , Ubiquinona/análise
13.
Arch Microbiol ; 200(7): 1049-1055, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29679163

RESUMO

A novel bacterium, designated DCY114T, was isolated from ginseng-cultivated soil in Gochang-gun, Republic of Korea. This isolate was assigned to the genus Paenibacillus and is closely related to Paenibacillus amylolyticus NRRL NRS-290T (98.3%), P. dongdonensis KUDC0114T (98.0%), P. tylopili MK2T (97.9%), P. tundrae A10bT (97.8%), and P. xylanexedens B22aT (97.5%) based on 16S rRNA gene sequence analysis. Strain DCY114T is a Gram-reaction positive, catalase and oxidase positive, facultatively aerobic rod that is motile by peritrichous flagella. Strain DCY114T produces siderophores and indole-3-acetic acid (IAA) and is able to solubilize phosphate as a plant growth-promoting bacterium. MK-7 was the diagnostic menaquinone. The major cellular fatty acids were anteiso-C15:0, C16:0, and C18:0, and the major polar lipids were diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), and an unknown amino lipid (AL1,2). The genomic DNA G + C content was 46.0 mol%. Phenotypic and chemotaxonomic results also placed strain DCY114T within the genus Paenibacillus. DNA-DNA homology values between strain DCY114T and closely related reference strains were lower than 43%. The low DNA relatedness data in combination with phylogenetic and biochemical tests indicated that strain DCY114T could not be assigned to a recognized species. The results of this study support that the DCY114T strain is a novel species belonging to the genus Paenibacillus, for which the name Paenibacillus panacihumi is proposed. The type strain is DCY114T (= KCTC 33915T = JCM 32073T).


Assuntos
Paenibacillus/isolamento & purificação , Panax/crescimento & desenvolvimento , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/metabolismo , Paenibacillus/classificação , Paenibacillus/genética , Paenibacillus/metabolismo , Panax/microbiologia , Filogenia , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA
14.
Artif Cells Nanomed Biotechnol ; 46(8): 1530-1540, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28918663

RESUMO

This research article investigates the one-pot synthesis of gold and silver chloride nanoparticles functionalized by fruit extract of Crataegus pinnatifida as reducing and stabilizing agents and their possible roles as novel anti-inflammatory agents. Hawthorn (C. pinnatifida) fruits are increasingly popular as raw materials for functional foods and anti-inflammatory potential agents because of abundant flavonoids. The reduction of auric chloride and silver nitrate by the aqueous fruit extract led to the formation of gold and silver chloride nanoparticles. The nanoparticles were further characterized by field emission transmission electron microscopy indicated that CP-AuNps and CP-AgClNps were hexagonal and cubic shape, respectively. According to X-ray diffraction results, the average crystallite sizes of CP-AuNps and CP-AgClNps were 14.20 nm and 24.80 nm. The biosynthesized CP-AgClNps served as efficient antimicrobial agents against Escherichia coli and Staphylococcus aureus. Furthermore, CP-AuNps and CP-AgClNps enhanced the DPPH radical scavenging activity of the fruit extract. Lastly, MTT assay of nanoparticles demonstrated low toxicity in murine macrophage (RAW264.7). Biosynthesized nanoparticles also reduced the production of the inflammatory cytokines including nitric oxide and prostaglandin E2 in lipopolysaccharide-induced RAW264.7 cells. Altogether, these findings suggest that CP-AuNps and CP-AgClNps can be used as novel drug carriers or biosensors with intrinsic anti-inflammatory activity.


Assuntos
Anti-Inflamatórios , Crataegus/química , Frutas/química , Ouro , Nanopartículas/química , Extratos Vegetais/química , Compostos de Prata , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Escherichia coli/crescimento & desenvolvimento , Ouro/química , Ouro/farmacologia , Camundongos , Células RAW 264.7 , Compostos de Prata/química , Compostos de Prata/farmacologia , Staphylococcus aureus/crescimento & desenvolvimento
15.
Artif Cells Nanomed Biotechnol ; 46(8): 2022-2032, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29190154

RESUMO

Recently, green metal nanoparticles have received global attention owing to their economical synthesis, biocompatible nature, widespread biomedical and environmental applications. Current study demonstrates a sustainable approach for the green synthesis of silver nanoparticles (P-AgNPs) and gold nanoparticles (P-AuNPs) from P. serrulata fresh fruit extract. The silver and gold nanoparticles were synthesized in a very rapid, efficient and facile manner, within 50 min and 30 s at 80 °C, respectively. The nanoparticles were characterized by using visual observation, UV-Vis, FE-TEM, EDX, elemental mapping, FT-IR, XRD and DLS, which confirmed the formation of monodispersed, crystalline and stable nanoparticles. Further, we explored these nanoparticles for anti-inflammatory activity through inhibition of downstream NF-κB activation in macrophages (RAW264.7). We demonstrated that the nanoparticles reduced expression of inflammatory mediators such as nitric oxide (NO), prostaglandin E2 (PEG2), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was attenuated in lipopolysaccharide (LPS)-induced RAW264.7 cells. Furthermore, nanoparticles significantly suppressed LPS-induced activation of NF-κB signalling pathway via p38 MAPK in RAW 264.7 cells. To the best of our knowledge, this is the first report on the efficient green synthesis of P-AgNPs and P-AuNPs using P. serrulata fresh fruit extract and its in vitro anti-inflammatory effects. Collectively, our results suggest that P. serrulata fresh fruit extract is a green resource for the eco-friendly synthesis of P-AgNPs and P-AuNPs, which further can be utilized as a novel therapeutic agent for prevention and cure of inflammation due to their biocompatible nature.


Assuntos
Anti-Inflamatórios , Frutas/química , Ouro , Nanopartículas Metálicas/química , Nanosferas/química , Extratos Vegetais/química , Prunus/química , Prata , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ouro/química , Ouro/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Células RAW 264.7 , Prata/química , Prata/farmacologia
16.
J Microbiol ; 55(10): 767-774, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28956356

RESUMO

Gram-staining-negative, uniflagellated, rod-shaped, designated as DCY110T, was isolated from sludge located in Gangwon province, Republic of Korea. The phylogenetic tree of 16S rRNA gene sequence showed that the strain DCY110T belonged to the genus Rhodoferax with a close similarity to Rhodoferax saidenbachensis DSM 22694T (97.7%), Rhodoferax antarcticus DSM 24876T (97.5%), Rhodoferax ferrireducens DSM 15236T (97.3%), and Rhodoferax fermentans JCM 7819T (96.7%). The predominant isoprenoid quinine was ubiquinone (Q-8). DNA G + C content was 62.8 mol%. The major polar lipids were phosphatidylethanolamine and two unidentified phospholipids. The major fatty acids (> 10%) were C12:0, C16:0, summed feature 3 (which comprised C16:1 ω7c and/or C16:1 ω6c). The DNA-DNA relatedness values between the strain DCY110T and the closely related relatives used in this study were lower than 70%. Based on the following polyphasic analysis, the strain DCY110T is considered as a novel species of the genus Rhodoferax, for which the name Rhodoferax koreense sp. nov. is proposed. The type strain is DCY-110T (= KCTC 52288T = JCM 31441T).


Assuntos
Comamonadaceae/classificação , Comamonadaceae/genética , Comamonadaceae/isolamento & purificação , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , Comamonadaceae/fisiologia , DNA Bacteriano/genética , Ácidos Graxos/análise , Genes Bacterianos/genética , Hibridização de Ácido Nucleico , Fosfatidiletanolaminas/análise , Fosfolipídeos/análise , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Esgotos/microbiologia , Ubiquinona/análise
17.
Curr Microbiol ; 74(12): 1417-1424, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28825128

RESUMO

The isolated Chryseobacterium ginsengiterrae sp. nov DCY68T was found to be Gram-negative, aerobic, non-motile, non-flagellate and rod-shaped. Their size was approximately 0.40-0.46 × 1.0-1.27 µm. The colonies were yellow-pigmented, convex, circular and 0.5-1.3 mm in diameter when grown on R2A agar for 2 days. DNA, esculin, skim milk, gelatine, starch, Tween 20, and Tween 80 were hydrolyzed, but not cellulose. The cells grew on R2A, TSA, and NA but not on MacConkey agars. Growth occured at 4-33 °C (optimum, 30 °C), at pH 5.0-8.0 (optimum, pH 6.5), and 0-2.5% NaCl. Nitrate was not reduced to nitrite. Oxidase and catalase activity were positive. Strain DCY68T contained ß-glucosidase activity in which ginsenoside Rb1 was enzymatically converted to ginsenoside F2. Analysis of the16S rRNA gene sequence revealed that strain C. ginsengiterrae sp. nov DCY68T belonged to the family Flavobacteriaceae and was most closely related to C. limigenitum SUR2T (97.4%). The genomic DNA G+C content was 42.0 mol%. The predominant quinones were MK-6 (74.5%) and MK-7 (25.5%). The major fatty acids were iso-C15:0, summed feature 3 (containing C16:1 ω7c and/or C16:1 ω6c) and iso-C17:0 3-OH. On the basis of these phenotypic, genotypic and chemotaxonomic studies, strain DCY68T represents a novel species of the genus Chryseobacterium, for which name C. ginsengiterrae sp. nov. is proposed. The type strain is DCY68T (=KCTC 32089T = JCM 18517T).


Assuntos
Chryseobacterium/enzimologia , Chryseobacterium/isolamento & purificação , Microbiologia do Solo , beta-Glucosidase/metabolismo , Aerobiose , Técnicas de Tipagem Bacteriana , Composição de Bases , Chryseobacterium/classificação , Chryseobacterium/genética , Análise por Conglomerados , Citosol/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Panax/crescimento & desenvolvimento , Filogenia , Quinonas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo , Temperatura
18.
Int J Syst Evol Microbiol ; 66(12): 5320-5327, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27666743

RESUMO

Ginseng-cultivated soil is an excellent habitat for soil-borne bacteria to proliferate. A novel strain, DCY87T, was isolated from ginseng-cultivated soil in Gochang County, Republic of Korea, and subsequently characterized by polyphasic approach. Cells were rod shaped, non-motile, aerobic, Gram-reaction-positive, oxidase-negative and catalase-positive. 16S rRNA gene sequence analysis showed that strain DCY87T shared the highest similarity to 'Phycicoccus ochangensis' L1b-b9 (98.7 %). Closely phylogenetic relatives of strain DCY87T were identified: Phycicoccus ginsenosidimutans BXN5-13T (97.9 %), Phycicoccus soli THG-a14T (97.8 %), Phycicoccus bigeumensis MSL-03T (97.3 %), Phycicoccus cremeus V2M29T (97.3 %), Phycicoccus aerophilus 5516T-20T (97.3 %), Phycicoccus dokdonensis DS-8T (97.3 %) and Phycicoccus jejuensis KSW2-15T (97.1 %). The major polar lipids were classified as phosphatidylinositol and diphosphatidylglycerol. The major cellular fatty acids were composed of iso-C15 : 0, anteiso-C15:0, C17 : 0 and C17 : 1ω8c. The menaquinone was resolved as MK-8(H4). Strain DCY87T contained meso-diaminopimelic acid as diamino acid in the cell-wall peptidoglycan and glucose, xylose and rhamnose in the whole-cell sugar. The genomic DNA G+C content was calculated to be 72.7 mol%. DNA-DNA hybridization value between strain DCY87T and 'P. ochangensis' L1b-b9 was estimated to be 50 %. However, DNA-DNA hybridization value obtained between strain DCY87T and P. ginsenosidimutans BXN5-13T, P. soli THG-a14T and P. bigeumensis MSL-03T was well below 17 %. In general, polyphasic taxonomy demonstrated that DCY87T strain represented a novel species within the genus Phycicoccus. Accordingly, we propose the name Phycicoccus ginsengisoli sp. nov. The type strain is DCY87T (=KCTC 39635T=JCM 31016T).


Assuntos
Actinomycetales/classificação , Panax/microbiologia , Filogenia , Microbiologia do Solo , Actinomycetales/genética , Actinomycetales/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
19.
PLoS One ; 11(5): e0155055, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27187071

RESUMO

Traditional molecular methods have been used to examine bacterial communities in ginseng-cultivated soil samples in a time-dependent manner. Despite these efforts, our understanding of the bacterial community is still inadequate. Therefore, in this study, a high-throughput sequencing approach was employed to investigate bacterial diversity in various ginseng field soil samples over cultivation times of 2, 4, and 6 years in the first and second rounds of cultivation. We used non-cultivated soil samples to perform a comparative study. Moreover, this study assessed changes in the bacterial community associated with soil depth and the health state of the ginseng. Bacterial richness decreased through years of cultivation. This study detected differences in relative abundance of bacterial populations between the first and second rounds of cultivation, years of cultivation, and health states of ginseng. These bacterial populations were mainly distributed in the classes Acidobacteria, Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, and Sphingobacteria. In addition, we found that pH, available phosphorus, and exchangeable Ca+ seemed to have high correlations with bacterial class in ginseng cultivated soil.


Assuntos
Bactérias/classificação , Biodiversidade , Panax , Microbiologia do Solo , Agricultura , Bactérias/genética , Análise por Conglomerados , Ecossistema , Evolução Molecular , Panax/crescimento & desenvolvimento , Filogenia , RNA Ribossômico 16S/genética , República da Coreia , Solo/química , Fatores de Tempo
20.
Int J Syst Evol Microbiol ; 66(1): 56-61, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26449233

RESUMO

A Gram-stain-negative, rod-shaped bacterium, designated DCY83T, was isolated from soil of a ginseng field in Gwangju Province, Republic of Korea. Cells were motile by means of flagella. Growth occurred at 4-40 °C (optimum 30 °C), at pH 6-8 (optimum pH 7.0) and with ≤ 0.4 % NaCl. Strain DCY83T was able to produce siderophore and was positive for phosphate solubilization. Indole-3-acetic acid production was 12.9 µg ml- 1 after 3 days in culture. 16S rRNA gene sequence analysis showed that strain DCY83T belonged to the genus Duganella and was related most closely to Duganella sacchari Sac-22T (97.4 % similarity), Duganella zoogloeoides IAM 12670T (97.1 %) and Duganella radicis Sac-41T (97.1 %). The major fatty acids were C16 : 0 and summed feature 3 (containing C16 : 1ω7c and/or C16 : 1ω6c). The major polar lipids were phosphatidylglycerol and phosphatidylethanolamine. The only quinone was ubiquinone 8. The genomic DNA G+C content was 55.3 mol%. DNA-DNA relatedness between strain DCY83T and D. sacchari KCTC 22381T, D. zoogloeoides JCM 20729T and D. radicis KCTC 22382T was 27.7, 22.4 and 35.5 %, respectively. On the basis of the phenotypic and genotypic analysis, DCY83T is classified as representing a novel species in the genus Duganella, for which the name Duganella ginsengisoli sp. nov. is proposed. The type strain is DCY83T ( = KCTC 42409T = JCM 30745T).


Assuntos
Oxalobacteraceae/classificação , Panax/microbiologia , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/química , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Oxalobacteraceae/genética , Oxalobacteraceae/isolamento & purificação , Fosfatidiletanolaminas/química , Fosfatidilgliceróis/química , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Ubiquinona/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...