Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(21): 21443-21454, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37857269

RESUMO

Photolithography is a well-established fabrication method for realizing multilayer electronic circuits. However, it is challenging to adopt photolithography to fabricate intrinsically stretchable multilayer electronic circuits fully composed of an elastomeric matrix, due to the opacity of thick stretchable nanocomposite conductors. Here, we present photothermal lithography that can pattern elastomeric conductors and via holes using pulsed lasers. The photothermal-patterned stretchable nanocomposite conductor exhibits 3 times higher conductivity (5940 S cm-1) and 5 orders of magnitude lower resistance change (R/R0 = 40) under a 30% strained 5000th cyclic stretch, compared to those of a screen-printed conductor, based on the percolation network formed by spatial heating of the laser. In addition, a 50 µm sized stretchable via holes can be patterned on the passivation without material ablation and electrical degradation of the bottom conductor. By repeatedly patterning the conductor and via holes, highly conductive and durable multilayer circuits can be stacked with layer-by-layer material integration. Finally, a stretchable wireless pressure sensor and passive matrix LED array are demonstrated, thus showing the potential for a stretchable multilayer electronic circuit with durability, high density, and multifunctionality.

2.
ACS Appl Mater Interfaces ; 14(21): 24840-24849, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35584034

RESUMO

Patterning elastomers is an essential process for the application of elastomers to stretchable bioelectric devices. In general, replication of a mold and laser ablation are used for patterning elastomers. However, these methods are inefficient and time consuming due to complex patterning procedures and a heat-induced curing mechanism. In this work, we developed a photopatternable elastomer called thiol-ene cross-linked poly(dimethylsiloxane) (TC-PDMS). TC-PDMS showed high-resolution patternability (∼100 µm) through a direct patterning process. It also had high stretchability (∼140%) and low Young's modulus (∼2.9 MPa) similar to conventional PDMS. To demonstrate its practicability in stretchable bioelectric devices, TC-PDMS was applied to a passivation layer of an intrinsically stretchable organic electrochemical transistor (OECT), which showed a low leakage current (∼20 µA) and a high transconductance (0.432 mS) at high strain (60%). The stretchable OECT was able to record electrocardiographic (ECG) signals from human skin, and the measured ECG signals exhibited a high signal-to-noise ratio of 12.2 dB.


Assuntos
Dimetilpolisiloxanos , Elastômeros , Módulo de Elasticidade , Humanos , Pele
3.
Sci Adv ; 7(48): eabi6290, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34826244

RESUMO

Flexible microneedles are important tools that allow access to the inside of biological tissue from the outside without surgery. However, it had been hard to realize microneedle sensor arrays on flexible substrates because of the difficulty of attaining a needle with a high Young's modulus for a selected area on a thin or soft substrate. In this work, we developed a microneedle sensor on a hybrid substrate based on high Young's modulus epoxy siloxane for the microneedles and low Young's modulus polydimethylsiloxane for the conformable substrate. Polyaniline was deposited on the microneedle for pH sensing. The mechanical durability of the device was assessed by insertion into pig skin 1000 times. Last, the flexible microneedle pH sensors showed their utility for monitoring pH distribution in rats in a peripheral artery diseases model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...